Computes the sparse categorical crossentropy loss.
tf.keras.losses.sparse_categorical_crossentropy(
y_true, y_pred, from_logits=False, axis=-1
)
Standalone usage:
y_true = [1, 2]
y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred)
assert loss.shape == (2,)
loss.numpy()
array([0.0513, 2.303], dtype=float32)
Args |
y_true
|
Ground truth values.
|
y_pred
|
The predicted values.
|
from_logits
|
Whether y_pred is expected to be a logits tensor. By default,
we assume that y_pred encodes a probability distribution.
|
axis
|
(Optional) Defaults to -1. The dimension along which the entropy is
computed.
|
Returns |
Sparse categorical crossentropy loss value.
|