tf.keras.activations.sigmoid
Stay organized with collections
Save and categorize content based on your preferences.
Sigmoid activation function, sigmoid(x) = 1 / (1 + exp(-x))
.
tf.keras.activations.sigmoid(
x
)
Applies the sigmoid activation function. For small values (<-5),
sigmoid
returns a value close to zero, and for large values (>5)
the result of the function gets close to 1.
Sigmoid is equivalent to a 2-element Softmax, where the second element is
assumed to be zero. The sigmoid function always returns a value between
0 and 1.
For example:
a = tf.constant([-20, -1.0, 0.0, 1.0, 20], dtype = tf.float32)
b = tf.keras.activations.sigmoid(a)
b.numpy()
array([2.0611537e-09, 2.6894143e-01, 5.0000000e-01, 7.3105860e-01,
1.0000000e+00], dtype=float32)
Arguments |
x
|
Input tensor.
|
Returns |
Tensor with the sigmoid activation: 1 / (1 + exp(-x)) .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2021-02-18 UTC."],[],[]]