tf.keras.layers.MaxPool1D

Max pooling operation for 1D temporal data.

Inherits From: Layer, Module

Main aliases

tf.keras.layers.MaxPooling1D

Compat aliases for migration

See Migration guide for more details.

tf.compat.v1.keras.layers.MaxPool1D, tf.compat.v1.keras.layers.MaxPooling1D

Downsamples the input representation by taking the maximum value over the window defined by pool_size. The window is shifted by strides. The resulting output when using "valid" padding option has a shape of: output_shape = (input_shape - pool_size + 1) / strides)

The resulting output shape when using the "same" padding option is: output_shape = input_shape / strides

For example, for strides=1 and padding="valid":

x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,
   strides=1, padding='valid')
max_pool_1d(x)
<tf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=
array([[[2.],
        [3.],
        [4.],
        [5.]]], dtype=float32)>

For example, for strides=2 and padding="valid":

x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,
   strides=2, padding='valid')
max_pool_1d(x)
<tf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=
array([[[2.],
        [4.]]], dtype=float32)>

For example, for strides=1 and padding="same":

x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,
   strides=1, padding='same')
max_pool_1d(x)
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[2.],
        [3.],
        [4.],
        [5.],
        [5.]]], dtype=float32)>

pool_size Integer, size of the max pooling window.
strides Integer, or None. Specifies how much the pooling window moves for each pooling step. If None, it will default to pool_size.
padding One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, steps, features) while channels_first corresponds to inputs with shape (batch, features, steps).

Input shape:

  • If data_format='channels_last': 3D tensor with shape (batch_size, steps, features).
  • If data_format='channels_first': 3D tensor with shape (batch_size, features, steps).

Output shape:

  • If data_format='channels_last': 3D tensor with shape (batch_size, downsampled_steps, features).
  • If data_format='channels_first': 3D tensor with shape (batch_size, features, downsampled_steps).