tf.experimental.tensorrt.ConversionParams
Stay organized with collections
Save and categorize content based on your preferences.
Parameters that are used for TF-TRT conversion.
tf.experimental.tensorrt.ConversionParams(
rewriter_config_template=None,
max_workspace_size_bytes=DEFAULT_TRT_MAX_WORKSPACE_SIZE_BYTES,
precision_mode=TrtPrecisionMode.FP32, minimum_segment_size=3,
is_dynamic_op=True, maximum_cached_engines=1, use_calibration=True,
max_batch_size=1, allow_build_at_runtime=True
)
Fields:
rewriter_config_template
: a template RewriterConfig proto used to create a
TRT-enabled RewriterConfig. If None, it will use a default one.
max_workspace_size_bytes
: the maximum GPU temporary memory which the TRT
engine can use at execution time. This corresponds to the
'workspaceSize' parameter of nvinfer1::IBuilder::setMaxWorkspaceSize().
precision_mode
: one the strings in
TrtPrecisionMode.supported_precision_modes().
minimum_segment_size
: the minimum number of nodes required for a subgraph
to be replaced by TRTEngineOp.
is_dynamic_op
: whether to generate dynamic TRT ops which will build the
TRT network and engine at run time. i.e. Since TensorRT version < 6.0
does not support dynamic dimensions other than the batch dimension, when
the TensorFlow graph has a non-batch dimension of dynamic size, we would
need to enable this option. This option should be set to True in TF 2.0.
maximum_cached_engines
: max number of cached TRT engines for dynamic TRT
ops. Created TRT engines for a dynamic dimension are cached. This is the
maximum number of engines that can be cached. If the number of cached
engines is already at max but none of them supports the input shapes,
the TRTEngineOp will fall back to run the original TF subgraph that
corresponds to the TRTEngineOp.
use_calibration
: this argument is ignored if precision_mode is not INT8.
If set to True, a calibration graph will be created to calibrate the
missing ranges. The calibration graph must be converted to an inference
graph by running calibration with calibrate(). If set to False,
quantization nodes will be expected for every tensor in the graph
(excluding those which will be fused). If a range is missing, an error
will occur. Please note that accuracy may be negatively affected if
there is a mismatch between which tensors TRT quantizes and which
tensors were trained with fake quantization.
max_batch_size
: max size for the input batch. This parameter is only
effective when use_implicit_batch is true.
allow_build_at_runtime
: whether to build TensorRT engines during runtime.
If no TensorRT engine can be found in cache that can handle the given
inputs during runtime, then a new TensorRT engine is built at runtime if
allow_build_at_runtime=True, and otherwise native TF is used. This
argument is only effective if is_dynamic_op=True.
Attributes |
rewriter_config_template
|
|
max_workspace_size_bytes
|
|
precision_mode
|
|
minimum_segment_size
|
|
is_dynamic_op
|
|
maximum_cached_engines
|
|
use_calibration
|
|
max_batch_size
|
|
allow_build_at_runtime
|
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2021-02-18 UTC."],[],[]]