View source on GitHub |
String to Id table that assigns out-of-vocabulary keys to hash buckets.
Inherits From: TrackableResource
tf.lookup.StaticVocabularyTable(
initializer, num_oov_buckets, lookup_key_dtype=None, name=None
)
For example, if an instance of StaticVocabularyTable
is initialized with a
string-to-id initializer that maps:
init = tf.lookup.KeyValueTensorInitializer(
keys=tf.constant(['emerson', 'lake', 'palmer']),
values=tf.constant([0, 1, 2], dtype=tf.int64))
table = tf.lookup.StaticVocabularyTable(
init,
num_oov_buckets=5)
The Vocabulary
object will performs the following mapping:
emerson -> 0
lake -> 1
palmer -> 2
<other term> -> bucket_id
, wherebucket_id
will be between3
and3 + num_oov_buckets - 1 = 7
, calculated by:hash(<term>) % num_oov_buckets + vocab_size
If input_tensor is:
input_tensor = tf.constant(["emerson", "lake", "palmer",
"king", "crimson"])
table[input_tensor].numpy()
array([0, 1, 2, 6, 7])
If initializer
is None, only out-of-vocabulary buckets are used.
Example usage:
num_oov_buckets = 3
vocab = ["emerson", "lake", "palmer", "crimnson"]
import tempfile
f = tempfile.NamedTemporaryFile(delete=False)
f.write('\n'.join(vocab).encode('utf-8'))
f.close()
init = tf.lookup.TextFileInitializer(
f.name,
key_dtype=tf.string, key_index=tf.lookup.TextFileIndex.WHOLE_LINE,
value_dtype=tf.int64, value_index=tf.lookup.TextFileIndex.LINE_NUMBER)
table = tf.lookup.StaticVocabularyTable(init, num_oov_buckets)
table.lookup(tf.constant(["palmer", "crimnson" , "king",
"tarkus", "black", "moon"])).numpy()
array([2, 3, 5, 6, 6, 4])
The hash function used for generating out-of-vocabulary buckets ID is Fingerprint64.
Note that the out-of-vocabulary bucket IDs always range from the table size
up to size + num_oov_buckets - 1
regardless of the table values, which could
cause unexpected collisions:
init = tf.lookup.KeyValueTensorInitializer(
keys=tf.constant(["emerson", "lake", "palmer"]),
values=tf.constant([1, 2, 3], dtype=tf.int64))
table = tf.lookup.StaticVocabularyTable(
init,
num_oov_buckets=1)
input_tensor = tf.constant(["emerson", "lake", "palmer", "king"])
table[input_tensor].numpy()
array([1, 2, 3, 3])
Args | |
---|---|
initializer
|
A TableInitializerBase object that contains the data used
to initialize the table. If None, then we only use out-of-vocab buckets.
|
num_oov_buckets
|
Number of buckets to use for out-of-vocabulary keys. Must be greater than zero. |
lookup_key_dtype
|
Data type of keys passed to lookup . Defaults to
initializer.key_dtype if initializer is specified, otherwise
tf.string . Must be string or integer, and must be castable to
initializer.key_dtype .
|
name
|
A name for the operation (optional). |
Raises | |
---|---|
ValueError
|
when num_oov_buckets is not positive.
|
TypeError
|
when lookup_key_dtype or initializer.key_dtype are not integer or string. Also when initializer.value_dtype != int64. |
Attributes | |
---|---|
key_dtype
|
The table key dtype. |
name
|
The name of the table. |
resource_handle
|
Returns the resource handle associated with this Resource. |
value_dtype
|
The table value dtype. |
Methods
lookup
lookup(
keys, name=None
)
Looks up keys
in the table, outputs the corresponding values.
It assigns out-of-vocabulary keys to buckets based in their hashes.
Args | |
---|---|
keys
|
Keys to look up. May be either a SparseTensor or dense Tensor .
|
name
|
Optional name for the op. |
Returns | |
---|---|
A SparseTensor if keys are sparse, a RaggedTensor if keys are ragged,
otherwise a dense Tensor .
|
Raises | |
---|---|
TypeError
|
when keys doesn't match the table key data type.
|
size
size(
name=None
)
Compute the number of elements in this table.
__getitem__
__getitem__(
keys
)
Looks up keys
in a table, outputs the corresponding values.