View source on GitHub |
Base class defining a [batch of] linear operator[s].
Inherits From: Module
tf.linalg.LinearOperator(
dtype,
graph_parents=None,
is_non_singular=None,
is_self_adjoint=None,
is_positive_definite=None,
is_square=None,
name=None,
parameters=None
)
Subclasses of LinearOperator
provide access to common methods on a
(batch) matrix, without the need to materialize the matrix. This allows:
- Matrix free computations
- Operators that take advantage of special structure, while providing a consistent API to users.
Subclassing
To enable a public method, subclasses should implement the leading-underscore
version of the method. The argument signature should be identical except for
the omission of name="..."
. For example, to enable
matmul(x, adjoint=False, name="matmul")
a subclass should implement
_matmul(x, adjoint=False)
.
Performance contract
Subclasses should only implement the assert methods
(e.g. assert_non_singular
) if they can be done in less than O(N^3)
time.
Class docstrings should contain an explanation of computational complexity. Since this is a high-performance library, attention should be paid to detail, and explanations can include constants as well as Big-O notation.
Shape compatibility
LinearOperator
subclasses should operate on a [batch] matrix with
compatible shape. Class docstrings should define what is meant by compatible
shape. Some subclasses may not support batching.
Examples:
x
is a batch matrix with compatible shape for matmul
if
operator.shape = [B1,...,Bb] + [M, N], b >= 0,
x.shape = [B1,...,Bb] + [N, R]
rhs
is a batch matrix with compatible shape for solve
if
operator.shape = [B1,...,Bb] + [M, N], b >= 0,
rhs.shape = [B1,...,Bb] + [M, R]
Example docstring for subclasses.
This operator acts like a (batch) matrix A
with shape
[B1,...,Bb, M, N]
for some b >= 0
. The first b
indices index a
batch member. For every batch index (i1,...,ib)
, A[i1,...,ib, : :]
is
an m x n
matrix. Again, this matrix A
may not be materialized, but for
purposes of identifying and working with compatible arguments the shape is
relevant.
Examples:
some_tensor = ... shape = ????
operator = MyLinOp(some_tensor)
operator.shape()
==> [2, 4, 4]
operator.log_abs_determinant()
==> Shape [2] Tensor
x = ... Shape [2, 4, 5] Tensor
operator.matmul(x)
==> Shape [2, 4, 5] Tensor
Shape compatibility
This operator acts on batch matrices with compatible shape. FILL IN WHAT IS MEANT BY COMPATIBLE SHAPE
Performance
FILL THIS IN
Matrix property hints
This LinearOperator
is initialized with boolean flags of the form is_X
,
for X = non_singular, self_adjoint, positive_definite, square
.
These have the following meaning:
- If
is_X == True
, callers should expect the operator to have the propertyX
. This is a promise that should be fulfilled, but is not a runtime assert. For example, finite floating point precision may result in these promises being violated. - If
is_X == False
, callers should expect the operator to not haveX
. - If
is_X == None
(the default), callers should have no expectation either way.
Initialization parameters
All subclasses of LinearOperator
are expected to pass a parameters
argument to super().__init__()
. This should be a dict
containing
the unadulterated arguments passed to the subclass __init__
. For example,
MyLinearOperator
with an initializer should look like:
def __init__(self, operator, is_square=False, name=None):
parameters = dict(
operator=operator,
is_square=is_square,
name=name
)
...
super().__init__(..., parameters=parameters)
```
Users can then access `my_linear_operator.parameters` to see all arguments
passed to its initializer.
<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2"><h2 class="add-link">Args</h2></th></tr>
<tr>
<td>
`dtype`<a id="dtype"></a>
</td>
<td>
The type of the this `LinearOperator`. Arguments to `matmul` and
`solve` will have to be this type.
</td>
</tr><tr>
<td>
`graph_parents`<a id="graph_parents"></a>
</td>
<td>
(Deprecated) Python list of graph prerequisites of this
`LinearOperator` Typically tensors that are passed during initialization
</td>
</tr><tr>
<td>
`is_non_singular`<a id="is_non_singular"></a>
</td>
<td>
Expect that this operator is non-singular.
</td>
</tr><tr>
<td>
`is_self_adjoint`<a id="is_self_adjoint"></a>
</td>
<td>
Expect that this operator is equal to its hermitian
transpose. If `dtype` is real, this is equivalent to being symmetric.
</td>
</tr><tr>
<td>
`is_positive_definite`<a id="is_positive_definite"></a>
</td>
<td>
Expect that this operator is positive definite,
meaning the quadratic form `x^H A x` has positive real part for all
nonzero `x`. Note that we do not require the operator to be
self-adjoint to be positive-definite. See:
https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices
</td>
</tr><tr>
<td>
`is_square`<a id="is_square"></a>
</td>
<td>
Expect that this operator acts like square [batch] matrices.
</td>
</tr><tr>
<td>
`name`<a id="name"></a>
</td>
<td>
A name for this `LinearOperator`.
</td>
</tr><tr>
<td>
`parameters`<a id="parameters"></a>
</td>
<td>
Python `dict` of parameters used to instantiate this
`LinearOperator`.
</td>
</tr>
</table>
<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2"><h2 class="add-link">Raises</h2></th></tr>
<tr>
<td>
`ValueError`<a id="ValueError"></a>
</td>
<td>
If any member of graph_parents is `None` or not a `Tensor`.
</td>
</tr><tr>
<td>
`ValueError`<a id="ValueError"></a>
</td>
<td>
If hints are set incorrectly.
</td>
</tr>
</table>
<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2"><h2 class="add-link">Attributes</h2></th></tr>
<tr>
<td>
`H`<a id="H"></a>
</td>
<td>
Returns the adjoint of the current `LinearOperator`.
Given `A` representing this `LinearOperator`, return `A*`.
Note that calling `self.adjoint()` and `self.H` are equivalent.
</td>
</tr><tr>
<td>
`batch_shape`<a id="batch_shape"></a>
</td>
<td>
`TensorShape` of batch dimensions of this `LinearOperator`.
If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns
`TensorShape([B1,...,Bb])`, equivalent to `A.shape[:-2]`
</td>
</tr><tr>
<td>
`domain_dimension`<a id="domain_dimension"></a>
</td>
<td>
Dimension (in the sense of vector spaces) of the domain of this operator.
If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns `N`.
</td>
</tr><tr>
<td>
`dtype`<a id="dtype"></a>
</td>
<td>
The `DType` of `Tensor`s handled by this `LinearOperator`.
</td>
</tr><tr>
<td>
`graph_parents`<a id="graph_parents"></a>
</td>
<td>
List of graph dependencies of this `LinearOperator`. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Do not call `graph_parents`.
</td>
</tr><tr>
<td>
`is_non_singular`<a id="is_non_singular"></a>
</td>
<td>
</td>
</tr><tr>
<td>
`is_positive_definite`<a id="is_positive_definite"></a>
</td>
<td>
</td>
</tr><tr>
<td>
`is_self_adjoint`<a id="is_self_adjoint"></a>
</td>
<td>
</td>
</tr><tr>
<td>
`is_square`<a id="is_square"></a>
</td>
<td>
Return `True/False` depending on if this operator is square.
</td>
</tr><tr>
<td>
`parameters`<a id="parameters"></a>
</td>
<td>
Dictionary of parameters used to instantiate this `LinearOperator`.
</td>
</tr><tr>
<td>
`range_dimension`<a id="range_dimension"></a>
</td>
<td>
Dimension (in the sense of vector spaces) of the range of this operator.
If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns `M`.
</td>
</tr><tr>
<td>
`shape`<a id="shape"></a>
</td>
<td>
`TensorShape` of this `LinearOperator`.
If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns
`TensorShape([B1,...,Bb, M, N])`, equivalent to `A.shape`.
</td>
</tr><tr>
<td>
`tensor_rank`<a id="tensor_rank"></a>
</td>
<td>
Rank (in the sense of tensors) of matrix corresponding to this operator.
If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns `b + 2`.
</td>
</tr>
</table>
## Methods
<h3 id="add_to_tensor"><code>add_to_tensor</code></h3>
<a target="_blank" class="external" href="https://github.com/tensorflow/tensorflow/blob/v2.7.4/tensorflow/python/ops/linalg/linear_operator.py#L1084-L1097">View source</a>
<pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link">
<code>add_to_tensor(
x, name='add_to_tensor'
)
</code></pre>
Add matrix represented by this operator to `x`. Equivalent to `A + x`.
<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2">Args</th></tr>
<tr>
<td>
`x`
</td>
<td>
`Tensor` with same `dtype` and shape broadcastable to `self.shape`.
</td>
</tr><tr>
<td>
`name`
</td>
<td>
A name to give this `Op`.
</td>
</tr>
</table>
<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2">Returns</th></tr>
<tr class="alt">
<td colspan="2">
A `Tensor` with broadcast shape and same `dtype` as `self`.
</td>
</tr>
</table>
<h3 id="adjoint"><code>adjoint</code></h3>
<a target="_blank" class="external" href="https://github.com/tensorflow/tensorflow/blob/v2.7.4/tensorflow/python/ops/linalg/linear_operator.py#L940-L955">View source</a>
<pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link">
<code>adjoint(
name='adjoint'
)
</code></pre>
Returns the adjoint of the current `LinearOperator`.
Given `A` representing this `LinearOperator`, return `A*`.
Note that calling `self.adjoint()` and `self.H` are equivalent.
<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2">Args</th></tr>
<tr>
<td>
`name`
</td>
<td>
A name for this `Op`.
</td>
</tr>
</table>
<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2">Returns</th></tr>
<tr class="alt">
<td colspan="2">
`LinearOperator` which represents the adjoint of this `LinearOperator`.
</td>
</tr>
</table>
<h3 id="assert_non_singular"><code>assert_non_singular</code></h3>
<a target="_blank" class="external" href="https://github.com/tensorflow/tensorflow/blob/v2.7.4/tensorflow/python/ops/linalg/linear_operator.py#L548-L566">View source</a>
<pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link">
<code>assert_non_singular(
name='assert_non_singular'
)
</code></pre>
Returns an `Op` that asserts this operator is non singular.
This operator is considered non-singular if
ConditionNumber < max{100, range_dimension, domain_dimension} * eps, eps := np.finfo(self.dtype.as_numpy_dtype).eps ```
Args | |
---|---|
name
|
A string name to prepend to created ops. |
Returns | |
---|---|
An Assert Op , that, when run, will raise an InvalidArgumentError if
the operator is singular.
|
assert_positive_definite
assert_positive_definite(
name='assert_positive_definite'
)
Returns an Op
that asserts this operator is positive definite.
Here, positive definite means that the quadratic form x^H A x
has positive
real part for all nonzero x
. Note that we do not require the operator to
be self-adjoint to be positive definite.
Args | |
---|---|
name
|
A name to give this Op .
|
Returns | |
---|---|
An Assert Op , that, when run, will raise an InvalidArgumentError if
the operator is not positive definite.
|
assert_self_adjoint
assert_self_adjoint(
name='assert_self_adjoint'
)
Returns an Op
that asserts this operator is self-adjoint.
Here we check that this operator is exactly equal to its hermitian transpose.
Args | |
---|---|
name
|
A string name to prepend to created ops. |
Returns | |
---|---|
An Assert Op , that, when run, will raise an InvalidArgumentError if
the operator is not self-adjoint.
|
batch_shape_tensor
batch_shape_tensor(
name='batch_shape_tensor'
)
Shape of batch dimensions of this operator, determined at runtime.
If this operator acts like the batch matrix A
with
A.shape = [B1,...,Bb, M, N]
, then this returns a Tensor
holding
[B1,...,Bb]
.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
int32 Tensor
|
cholesky
cholesky(
name='cholesky'
)
Returns a Cholesky factor as a LinearOperator
.
Given A
representing this LinearOperator
, if A
is positive definite
self-adjoint, return L
, where A = L L^T
, i.e. the cholesky
decomposition.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
LinearOperator which represents the lower triangular matrix
in the Cholesky decomposition.
|
Raises | |
---|---|
ValueError
|
When the LinearOperator is not hinted to be positive
definite and self adjoint.
|
cond
cond(
name='cond'
)
Returns the condition number of this linear operator.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
Shape [B1,...,Bb] Tensor of same dtype as self .
|
determinant
determinant(
name='det'
)
Determinant for every batch member.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
Tensor with shape self.batch_shape and same dtype as self .
|
Raises | |
---|---|
NotImplementedError
|
If self.is_square is False .
|
diag_part
diag_part(
name='diag_part'
)
Efficiently get the [batch] diagonal part of this operator.
If this operator has shape [B1,...,Bb, M, N]
, this returns a
Tensor
diagonal
, of shape [B1,...,Bb, min(M, N)]
, where
diagonal[b1,...,bb, i] = self.to_dense()[b1,...,bb, i, i]
.
my_operator = LinearOperatorDiag([1., 2.])
# Efficiently get the diagonal
my_operator.diag_part()
==> [1., 2.]
# Equivalent, but inefficient method
tf.linalg.diag_part(my_operator.to_dense())
==> [1., 2.]
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
diag_part
|
A Tensor of same dtype as self.
|
domain_dimension_tensor
domain_dimension_tensor(
name='domain_dimension_tensor'
)
Dimension (in the sense of vector spaces) of the domain of this operator.
Determined at runtime.
If this operator acts like the batch matrix A
with
A.shape = [B1,...,Bb, M, N]
, then this returns N
.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
int32 Tensor
|
eigvals
eigvals(
name='eigvals'
)
Returns the eigenvalues of this linear operator.
If the operator is marked as self-adjoint (via is_self_adjoint
)
this computation can be more efficient.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
Shape [B1,...,Bb, N] Tensor of same dtype as self .
|
inverse
inverse(
name='inverse'
)
Returns the Inverse of this LinearOperator
.
Given A
representing this LinearOperator
, return a LinearOperator
representing A^-1
.
Args | |
---|---|
name
|
A name scope to use for ops added by this method. |
Returns | |
---|---|
LinearOperator representing inverse of this matrix.
|
Raises | |
---|---|
ValueError
|
When the LinearOperator is not hinted to be non_singular .
|
log_abs_determinant
log_abs_determinant(
name='log_abs_det'
)
Log absolute value of determinant for every batch member.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
Tensor with shape self.batch_shape and same dtype as self .
|
Raises | |
---|---|
NotImplementedError
|
If self.is_square is False .
|
matmul
matmul(
x, adjoint=False, adjoint_arg=False, name='matmul'
)
Transform [batch] matrix x
with left multiplication: x --> Ax
.
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N]
operator = LinearOperator(...)
operator.shape = [..., M, N]
X = ... # shape [..., N, R], batch matrix, R > 0.
Y = operator.matmul(X)
Y.shape
==> [..., M, R]
Y[..., :, r] = sum_j A[..., :, j] X[j, r]
Args | |
---|---|
x
|
LinearOperator or Tensor with compatible shape and same dtype as
self . See class docstring for definition of compatibility.
|
adjoint
|
Python bool . If True , left multiply by the adjoint: A^H x .
|
adjoint_arg
|
Python bool . If True , compute A x^H where x^H is
the hermitian transpose (transposition and complex conjugation).
|
name
|
A name for this Op .
|
Returns | |
---|---|
A LinearOperator or Tensor with shape [..., M, R] and same dtype
as self .
|
matvec
matvec(
x, adjoint=False, name='matvec'
)
Transform [batch] vector x
with left multiplication: x --> Ax
.
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N]
operator = LinearOperator(...)
X = ... # shape [..., N], batch vector
Y = operator.matvec(X)
Y.shape
==> [..., M]
Y[..., :] = sum_j A[..., :, j] X[..., j]
Args | |
---|---|
x
|
Tensor with compatible shape and same dtype as self .
x is treated as a [batch] vector meaning for every set of leading
dimensions, the last dimension defines a vector.
See class docstring for definition of compatibility.
|
adjoint
|
Python bool . If True , left multiply by the adjoint: A^H x .
|
name
|
A name for this Op .
|
Returns | |
---|---|
A Tensor with shape [..., M] and same dtype as self .
|
range_dimension_tensor
range_dimension_tensor(
name='range_dimension_tensor'
)
Dimension (in the sense of vector spaces) of the range of this operator.
Determined at runtime.
If this operator acts like the batch matrix A
with
A.shape = [B1,...,Bb, M, N]
, then this returns M
.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
int32 Tensor
|
shape_tensor
shape_tensor(
name='shape_tensor'
)
Shape of this LinearOperator
, determined at runtime.
If this operator acts like the batch matrix A
with
A.shape = [B1,...,Bb, M, N]
, then this returns a Tensor
holding
[B1,...,Bb, M, N]
, equivalent to tf.shape(A)
.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
int32 Tensor
|
solve
solve(
rhs, adjoint=False, adjoint_arg=False, name='solve'
)
Solve (exact or approx) R
(batch) systems of equations: A X = rhs
.
The returned Tensor
will be close to an exact solution if A
is well
conditioned. Otherwise closeness will vary. See class docstring for details.
Examples:
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N]
operator = LinearOperator(...)
operator.shape = [..., M, N]
# Solve R > 0 linear systems for every member of the batch.
RHS = ... # shape [..., M, R]
X = operator.solve(RHS)
# X[..., :, r] is the solution to the r'th linear system
# sum_j A[..., :, j] X[..., j, r] = RHS[..., :, r]
operator.matmul(X)
==> RHS
Args | |
---|---|
rhs
|
Tensor with same dtype as this operator and compatible shape.
rhs is treated like a [batch] matrix meaning for every set of leading
dimensions, the last two dimensions defines a matrix.
See class docstring for definition of compatibility.
|
adjoint
|
Python bool . If True , solve the system involving the adjoint
of this LinearOperator : A^H X = rhs .
|
adjoint_arg
|
Python bool . If True , solve A X = rhs^H where rhs^H
is the hermitian transpose (transposition and complex conjugation).
|
name
|
A name scope to use for ops added by this method. |
Returns | |
---|---|
Tensor with shape [...,N, R] and same dtype as rhs .
|
Raises | |
---|---|
NotImplementedError
|
If self.is_non_singular or is_square is False.
|
solvevec
solvevec(
rhs, adjoint=False, name='solve'
)
Solve single equation with best effort: A X = rhs
.
The returned Tensor
will be close to an exact solution if A
is well
conditioned. Otherwise closeness will vary. See class docstring for details.
Examples:
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N]
operator = LinearOperator(...)
operator.shape = [..., M, N]
# Solve one linear system for every member of the batch.
RHS = ... # shape [..., M]
X = operator.solvevec(RHS)
# X is the solution to the linear system
# sum_j A[..., :, j] X[..., j] = RHS[..., :]
operator.matvec(X)
==> RHS
Args | |
---|---|
rhs
|
Tensor with same dtype as this operator.
rhs is treated like a [batch] vector meaning for every set of leading
dimensions, the last dimension defines a vector. See class docstring
for definition of compatibility regarding batch dimensions.
|
adjoint
|
Python bool . If True , solve the system involving the adjoint
of this LinearOperator : A^H X = rhs .
|
name
|
A name scope to use for ops added by this method. |
Returns | |
---|---|
Tensor with shape [...,N] and same dtype as rhs .
|
Raises | |
---|---|
NotImplementedError
|
If self.is_non_singular or is_square is False.
|
tensor_rank_tensor
tensor_rank_tensor(
name='tensor_rank_tensor'
)
Rank (in the sense of tensors) of matrix corresponding to this operator.
If this operator acts like the batch matrix A
with
A.shape = [B1,...,Bb, M, N]
, then this returns b + 2
.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
int32 Tensor , determined at runtime.
|
to_dense
to_dense(
name='to_dense'
)
Return a dense (batch) matrix representing this operator.
trace
trace(
name='trace'
)
Trace of the linear operator, equal to sum of self.diag_part()
.
If the operator is square, this is also the sum of the eigenvalues.
Args | |
---|---|
name
|
A name for this Op .
|
Returns | |
---|---|
Shape [B1,...,Bb] Tensor of same dtype as self .
|
__matmul__
__matmul__(
other
)