View source on GitHub |
Computes the crossentropy metric between the labels and predictions.
Inherits From: MeanMetricWrapper
, Mean
, Metric
, Layer
, Module
tf.keras.metrics.CategoricalCrossentropy(
name='categorical_crossentropy',
dtype=None,
from_logits=False,
label_smoothing=0
)
This is the crossentropy metric class to be used when there are multiple
label classes (2 or more). Here we assume that labels are given as a one_hot
representation. eg., When labels values are [2, 0, 1],
y_true
= [[0, 0, 1], [1, 0, 0], [0, 1, 0]].
Standalone usage:
# EPSILON = 1e-7, y = y_true, y` = y_pred
# y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)
# y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]
# xent = -sum(y * log(y'), axis = -1)
# = -((log 0.95), (log 0.1))
# = [0.051, 2.302]
# Reduced xent = (0.051 + 2.302) / 2
m = tf.keras.metrics.CategoricalCrossentropy()
m.update_state([[0, 1, 0], [0, 0, 1]],
[[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
m.result().numpy()
1.1769392
m.reset_state()
m.update_state([[0, 1, 0], [0, 0, 1]],
[[0.05, 0.95, 0], [0.1, 0.8, 0.1]],
sample_weight=tf.constant([0.3, 0.7]))
m.result().numpy()
1.6271976
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.CategoricalCrossentropy()])
Methods
merge_state
merge_state(
metrics
)
Merges the state from one or more metrics.
This method can be used by distributed systems to merge the state computed by different metric instances. Typically the state will be stored in the form of the metric's weights. For example, a tf.keras.metrics.Mean metric contains a list of two weight values: a total and a count. If there were two instances of a tf.keras.metrics.Accuracy that each independently aggregated partial state for an overall accuracy calculation, these two metric's states could be combined as follows:
m1 = tf.keras.metrics.Accuracy()
_ = m1.update_state([[1], [2]], [[0], [2]])
m2 = tf.keras.metrics.Accuracy()
_ = m2.update_state([[3], [4]], [[3], [4]])
m2.merge_state([m1])
m2.result().numpy()
0.75
Args | |
---|---|
metrics
|
an iterable of metrics. The metrics must have compatible state. |
Raises | |
---|---|
ValueError
|
If the provided iterable does not contain metrics matching the metric's required specifications. |
reset_state
reset_state()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_state
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
For sparse categorical metrics, the shapes of y_true
and y_pred
are
different.
Args | |
---|---|
y_true
|
Ground truth label values. shape = [batch_size, d0, .. dN-1] or
shape = [batch_size, d0, .. dN-1, 1] .
|
y_pred
|
The predicted probability values. shape = [batch_size, d0, .. dN] .
|
sample_weight
|
Optional sample_weight acts as a
coefficient for the metric. If a scalar is provided, then the metric is
simply scaled by the given value. If sample_weight is a tensor of size
[batch_size] , then the metric for each sample of the batch is rescaled
by the corresponding element in the sample_weight vector. If the shape
of sample_weight is [batch_size, d0, .. dN-1] (or can be broadcasted
to this shape), then each metric element of y_pred is scaled by the
corresponding value of sample_weight . (Note on dN-1 : all metric
functions reduce by 1 dimension, usually the last axis (-1)).
|
Returns | |
---|---|
Update op. |