Represents options for dataset optimizations.
tf.data.experimental.OptimizationOptions()
You can set the optimization options of a dataset through the
experimental_optimization
property of tf.data.Options
; the property is
an instance of tf.data.experimental.OptimizationOptions
.
options = tf.data.Options()
options.experimental_optimization.noop_elimination = True
options.experimental_optimization.apply_default_optimizations = False
dataset = dataset.with_options(options)
Attributes |
apply_default_optimizations
|
Whether to apply default graph optimizations. If False, only graph optimizations that have been explicitly enabled will be applied.
|
filter_fusion
|
Whether to fuse filter transformations. If None, defaults to False.
|
map_and_batch_fusion
|
Whether to fuse map and batch transformations. If None, defaults to True.
|
map_and_filter_fusion
|
Whether to fuse map and filter transformations. If None, defaults to False.
|
map_fusion
|
Whether to fuse map transformations. If None, defaults to False.
|
map_parallelization
|
Whether to parallelize stateless map transformations. If None, defaults to True.
|
noop_elimination
|
Whether to eliminate no-op transformations. If None, defaults to True.
|
parallel_batch
|
Whether to parallelize copying of batch elements. This optimization is highly experimental and can cause performance degradation (e.g. when the parallelization overhead exceeds the benefits of performing the data copies in parallel). You should only enable this optimization if a) your input pipeline is bottlenecked on batching and b) you have validated that this optimization improves performance. If None, defaults to False.
|
shuffle_and_repeat_fusion
|
Whether to fuse shuffle and repeat transformations. If None, defaults to True.
|
Methods
__eq__
View source
__eq__(
other
)
Return self==value.
__ne__
View source
__ne__(
other
)
Return self!=value.