tf.compat.v1.tpu.experimental.AdamParameters

Optimization parameters for Adam with TPU embeddings.

Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec via the optimization_parameters argument to set the optimizer and its parameters. See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec for more details.

estimator = tf.estimator.tpu.TPUEstimator(
    ...
    embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
        ...
        optimization_parameters=tf.tpu.experimental.AdamParameters(0.1),
        ...))

learning_rate a floating point value. The learning rate.
beta1 A float value. The exponential decay rate for the 1st moment estimates.
beta2 A float value. The exponential decay rate for the 2nd moment estimates.
epsilon A small constant for numerical stability.
lazy_adam Use lazy Adam instead of Adam. Lazy Adam trains faster. See optimization_parameters.proto for details.
sum_inside_sqrt This improves training speed. Please see optimization_parameters.proto for details.
use_gradient_accumulation setting this to False makes embedding gradients calculation less accurate but faster. Please see optimization_parameters.proto for details.
clip_weight_min the minimum value to clip by; None means -infinity.
clip_weight_max the maximum value to clip by; None means +infinity.
weight_decay_factor amount of weight decay to apply; None means that the weights are not decayed.
multiply_weight_decay_factor_by_learning_rate if true, weight_decay_factor is multiplied by the current learning rate.
clip_gradient_min the minimum value to clip by; None means -infinity. Gradient accumulation must be set to true if this is set.
clip_gradient_max the maximum value to clip by; None means +infinity. Gradient accumulation must be set to true if this is set.