View source on GitHub |
Abstract object representing an RNN cell.
Inherits From: Layer
, Layer
, Module
tf.compat.v1.nn.rnn_cell.RNNCell(
trainable=True, name=None, dtype=None, **kwargs
)
Every RNNCell
must have the properties below and implement call
with
the signature (output, next_state) = call(input, state)
. The optional
third input argument, scope
, is allowed for backwards compatibility
purposes; but should be left off for new subclasses.
This definition of cell differs from the definition used in the literature. In the literature, 'cell' refers to an object with a single scalar output. This definition refers to a horizontal array of such units.
An RNN cell, in the most abstract setting, is anything that has
a state and performs some operation that takes a matrix of inputs.
This operation results in an output matrix with self.output_size
columns.
If self.state_size
is an integer, this operation also results in a new
state matrix with self.state_size
columns. If self.state_size
is a
(possibly nested tuple of) TensorShape object(s), then it should return a
matching structure of Tensors having shape [batch_size].concatenate(s)
for each s
in self.batch_size
.
Methods
get_initial_state
get_initial_state(
inputs=None, batch_size=None, dtype=None
)
zero_state
zero_state(
batch_size, dtype
)
Return zero-filled state tensor(s).
Args | |
---|---|
batch_size
|
int, float, or unit Tensor representing the batch size. |
dtype
|
the data type to use for the state. |
Returns | |
---|---|
If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size, state_size] filled with zeros.
If |