View source on GitHub |
Initializer that generates a normal distribution.
Inherits From: random_normal_initializer
tf.compat.v1.keras.initializers.RandomNormal(
mean=0.0,
stddev=0.05,
seed=None,
dtype=tf.dtypes.float32
)
Migrate to TF2
Although it is a legacy compat.v1 api,
tf.compat.v1.keras.initializers.RandomNormal
is compatible with eager
execution and tf.function
.
To switch to native TF2, switch to using
tf.keras.initializers.RandomNormal
(not from compat.v1
) and
if you need to change the default dtype use
tf.keras.backend.set_floatx(float_dtype)
or pass the dtype when calling the initializer, rather than passing it
when constructing the initializer.
Random seed behavior: Also be aware that if you pass a seed to the TF2 initializer API it will reuse that same seed for every single initialization (unlike the TF1 intializer)
Structural Mapping to Native TF2
Before:
initializer = tf.compat.v1.keras.initializers.RandomNormal(
mean=mean,
stddev=stddev,
seed=seed,
dtype=dtype)
weight_one = tf.Variable(initializer(shape_one))
weight_two = tf.Variable(initializer(shape_two))
After:
initializer = tf.keras.initializers.RandomNormal(
mean=mean,
# seed=seed, # Setting a seed in the native TF2 API
# causes it to produce the same initializations
# across multiple calls of the same initializer.
stddev=stddev)
weight_one = tf.Variable(initializer(shape_one, dtype=dtype))
weight_two = tf.Variable(initializer(shape_two, dtype=dtype))
How to Map Arguments
TF1 Arg Name | TF2 Arg Name | Note |
---|---|---|
mean |
mean |
No change to defaults |
stddev |
stddev |
No change to defaults |
seed
|
seed
|
Different random number generation
semantics (to change in a
future version). If set, the TF2 version
will use stateless random number
generation which will produce the exact
same initialization even across multiple
calls of the initializer instance. the
compat.v1 version will generate new
initializations each time. Do not set
a seed if you need different
initializations each time. Instead
either set a global tf seed with
tf.random.set_seed if you need
determinism, or initialize each weight
with a separate initializer instance
and a different seed. |
dtype
|
dtype
|
The TF2 native api only takes it
as a __call__ arg, not a constructor arg. |
partition_info |
- | (__call__ arg in TF1) Not supported |
Example of fixed-seed behavior differences
compat.v1
Fixed seed behavior:
initializer = tf.compat.v1.keras.initializers.TruncatedNormal(seed=10)
a = initializer(shape=(2, 2))
b = initializer(shape=(2, 2))
tf.reduce_sum(a - b) == 0
<tf.Tensor: shape=(), dtype=bool, numpy=False>
After:
initializer = tf.keras.initializers.TruncatedNormal(seed=10)
a = initializer(shape=(2, 2))
b = initializer(shape=(2, 2))
tf.reduce_sum(a - b) == 0
<tf.Tensor: shape=(), dtype=bool, numpy=True>
Description
Args | |
---|---|
mean
|
a python scalar or a scalar tensor. Mean of the random values to generate. |
stddev
|
a python scalar or a scalar tensor. Standard deviation of the random values to generate. |
seed
|
A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed for behavior.
|
dtype
|
Default data type, used if no dtype argument is provided when
calling the initializer. Only floating point types are supported.
|
Methods
from_config
@classmethod
from_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args | |
---|---|
config
|
A Python dictionary. It will typically be the output of
get_config .
|
Returns | |
---|---|
An Initializer instance. |
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns | |
---|---|
A JSON-serializable Python dict. |
__call__
__call__(
shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
Args | |
---|---|
shape
|
Shape of the tensor. |
dtype
|
Optional dtype of the tensor. If not provided use the initializer dtype. |
partition_info
|
Optional information about the possible partitioning of a tensor. |