TensorFlow 1 version | View source on GitHub |
Returns an element-wise x * y.
tf.math.multiply(
x, y, name=None
)
For example:
x = tf.constant(([1, 2, 3, 4]))
tf.math.multiply(x, x)
<tf.Tensor: shape=(4,), dtype=..., numpy=array([ 1, 4, 9, 16], dtype=int32)>
Since tf.math.multiply
will convert its arguments to Tensor
s, you can also
pass in non-Tensor
arguments:
tf.math.multiply(7,6)
<tf.Tensor: shape=(), dtype=int32, numpy=42>
If x.shape
is not the same as y.shape
, they will be broadcast to a
compatible shape. (More about broadcasting
here.)
For example:
x = tf.ones([1, 2]);
y = tf.ones([2, 1]);
x * y # Taking advantage of operator overriding
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[1., 1.],
[1., 1.]], dtype=float32)>
The reduction version of this elementwise operation is tf.math.reduce_prod
Args | |
---|---|
x
|
A Tensor. Must be one of the following types: bfloat16 ,
half , float32 , float64 , uint8 , int8 , uint16 ,
int16 , int32 , int64 , complex64 , complex128 .
|
y
|
A Tensor . Must have the same type as x .
|
name
|
A name for the operation (optional). |
Returns |
---|
A Tensor
. Has the same type as x
.
Raises | |
---|---|
|