Instantiates the EfficientNetB7 architecture.
View aliases
Main aliases
tf.keras.applications.EfficientNetB7
See Migration guide for more details.
tf.compat.v1.keras.applications.EfficientNetB7
, tf.compat.v1.keras.applications.efficientnet.EfficientNetB7
tf.keras.applications.efficientnet.EfficientNetB7(
include_top=True, weights='imagenet', input_tensor=None,
input_shape=None, pooling=None, classes=1000,
classifier_activation='softmax', **kwargs
)
Reference:
This function returns a Keras image classification model, optionally loaded with weights pre-trained on ImageNet.
For image classification use cases, see this page for detailed examples.
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
Args | |
---|---|
include_
|
Whether to include the fully-connected layer at the top of the network. Defaults to True. |
weights
|
One of None (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded. Defaults to 'imagenet'.
|
input_
|
Optional Keras tensor
(i.e. output of layers.Input() )
to use as image input for the model.
|
input_
|
Optional shape tuple, only to be specified
if include_ is False.
It should have exactly 3 inputs channels.
|
pooling
|
Optional pooling mode for feature extraction
when include_ is False . Defaults to None.
|
classes
|
Optional number of classes to classify images
into, only to be specified if include_top is True, and
if no weights argument is specified. Defaults to 1000 (number of
ImageNet classes).
|
classifier_activation
|
A str or callable. The activation function to use
on the "top" layer. Ignored unless include_top=True . Set
classifier_activation=None to return the logits of the "top" layer.
Defaults to 'softmax'.
When loading pretrained weights, classifier_activation can only
be None or "softmax" .
|
Returns | |
---|---|
A keras.Model instance.
|