Computes the Gauss error function of x
element-wise. In statistics, for non-negative values of $x$, the error function has the following interpretation: for a random variable $Y$ that is normally distributed with mean 0 and variance $1/\sqrt{2}$, $erf(x)$ is the probability that $Y$ falls in the range $[−x, x]$.
tf.math.erf(
x, name=None
)
For example:
tf.math.erf([[1.0, 2.0, 3.0], [0.0, -1.0, -2.0]])
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[ 0.8427007, 0.9953223, 0.999978 ],
[ 0. , -0.8427007, -0.9953223]], dtype=float32)>
Args |
x
|
A Tensor . Must be one of the following types: bfloat16 , half , float32 , float64 .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as x .
If x is a SparseTensor , returns
SparseTensor(x.indices, tf.math.erf(x.values, ...), x.dense_shape)
|