TensorFlow 1 version | View source on GitHub |
Creates a Head
for multi class classification.
Inherits From: Head
tf.estimator.MultiClassHead(
n_classes, weight_column=None, label_vocabulary=None,
loss_reduction=tf.compat.v2.keras.losses.Reduction.SUM_OVER_BATCH_SIZE,
loss_fn=None, name=None
)
Uses sparse_softmax_cross_entropy
loss.
The head expects logits
with shape [D0, D1, ... DN, n_classes]
.
In many applications, the shape is [batch_size, n_classes]
.
labels
must be a dense Tensor
with shape matching logits
, namely
[D0, D1, ... DN, 1]
. If label_vocabulary
given, labels
must be a string
Tensor
with values from the vocabulary. If label_vocabulary
is not given,
labels
must be an integer Tensor
with values specifying the class index.
If weight_column
is specified, weights must be of shape
[D0, D1, ... DN]
, or [D0, D1, ... DN, 1]
.
The loss is the weighted sum over the input dimensions. Namely, if the input
labels have shape [batch_size, 1]
, the loss is the weighted sum over
batch_size
.
Also supports custom loss_fn
. loss_fn
takes (labels, logits)
or
(labels, logits, features, loss_reduction)
as arguments and returns
unreduced loss with shape [D0, D1, ... DN, 1]
. loss_fn
must support
integer labels
with shape [D0, D1, ... DN, 1]
. Namely, the head applies
label_vocabulary
to the input labels before passing them to loss_fn
.
Usage:
n_classes = 3
head = tf.estimator.MultiClassHead(n_classes)
logits = np.array(((10, 0, 0), (0, 10, 0),), dtype=np.float32)
labels = np.array(((1,), (1,)), dtype=np.int64)
features = {'x': np.array(((42,),), dtype=np.int32)}
# expected_loss = sum(cross_entropy(labels, logits)) / batch_size
# = sum(10, 0) / 2 = 5.
loss = head.loss(labels, logits, features=features)
print('{:.2f}'.format(loss.numpy()))
5.00
eval_metrics = head.metrics()
updated_metrics = head.update_metrics(
eval_metrics, features, logits, labels)
for k in sorted(updated_metrics):
print('{} : {:.2f}'.format(k, updated_metrics[k].result().numpy()))
accuracy : 0.50
average_loss : 5.00
preds = head.predictions(logits)
print(preds['logits'])
tf.Tensor(
[[10. 0. 0.]
[ 0. 10. 0.]], shape=(2, 3), dtype=float32)
Usage with a canned estimator:
my_head = tf.estimator.MultiClassHead(n_classes=3)
my_estimator = tf.estimator.DNNEstimator(
head=my_head,
hidden_units=...,
feature_columns=...)
It can also be used with a custom model_fn
. Example:
def _my_model_fn(features, labels, mode):
my_head = tf.estimator.MultiClassHead(n_classes=3)
logits = tf.keras.Model(...)(features)
return my_head.create_estimator_spec(
features=features,
mode=mode,
labels=labels,
optimizer=tf.keras.optimizers.Adagrad(lr=0.1),
logits=logits)
my_estimator = tf.estimator.Estimator(model_fn=_my_model_fn)
Args | |
---|---|
n_classes
|
Number of classes, must be greater than 2 (for 2 classes, use
BinaryClassHead ).
|
weight_column
|
A string or a NumericColumn created by
tf.feature_column.numeric_column defining feature column representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.
|
label_vocabulary
|
A list or tuple of strings representing possible label
values. If it is not given, that means labels are already encoded as an
integer within [0, n_classes). If given, labels must be of string type and
have any value in label_vocabulary . Note that errors will be raised if
label_vocabulary is not provided but labels are strings. If both
n_classes and label_vocabulary are provided, label_vocabulary should
contain exactly n_classes items.
|
loss_reduction
|
One of tf.losses.Reduction except NONE . Decides how to
reduce training loss over batch. Defaults to SUM_OVER_BATCH_SIZE , namely
weighted sum of losses divided by batch size * label_dimension .
|
loss_fn
|
Optional loss function. |
name
|
Name of the head. If provided, summary and metrics keys will be
suffixed by "/" + name . Also used as name_scope when creating ops.
|
Attributes | |
---|---|
logits_dimension
|
See base_head.Head for details.
|
loss_reduction
|
See base_head.Head for details.
|
name
|
See base_head.Head for details.
|
Methods
create_estimator_spec
create_estimator_spec(
features, mode, logits, labels=None, optimizer=None, trainable_variables=None,
train_op_fn=None, update_ops=None, regularization_losses=None
)
Returns EstimatorSpec
that a model_fn can return.
It is recommended to pass all args via name.
Args | |
---|---|
features
|
Input dict mapping string feature names to Tensor or
SparseTensor objects containing the values for that feature in a
minibatch. Often to be used to fetch example-weight tensor.
|
mode
|
Estimator's ModeKeys .
|
logits
|
Logits Tensor to be used by the head.
|
labels
|
Labels Tensor , or dict mapping string label names to Tensor
objects of the label values.
|
optimizer
|
An tf.keras.optimizers.Optimizer instance to optimize the
loss in TRAIN mode. Namely, sets train_op = optimizer.get_updates(loss,
trainable_variables) , which updates variables to minimize loss .
|
trainable_variables
|
A list or tuple of Variable objects to update to
minimize loss . In Tensorflow 1.x, by default these are the list of
variables collected in the graph under the key
GraphKeys.TRAINABLE_VARIABLES . As Tensorflow 2.x doesn't have
collections and GraphKeys, trainable_variables need to be passed
explicitly here.
|
train_op_fn
|
Function that takes a scalar loss Tensor and returns an op
to optimize the model with the loss in TRAIN mode. Used if optimizer
is None . Exactly one of train_op_fn and optimizer must be set in
TRAIN mode. By default, it is None in other modes. If you want to
optimize loss yourself, you can pass lambda _: tf.no_op() and then use
EstimatorSpec.loss to compute and apply gradients.
|
update_ops
|
A list or tuple of update ops to be run at training time. For example, layers such as BatchNormalization create mean and variance update ops that need to be run at training time. In Tensorflow 1.x, these are thrown into an UPDATE_OPS collection. As Tensorflow 2.x doesn't have collections, update_ops need to be passed explicitly here. |
regularization_losses
|
A list of additional scalar losses to be added to the training loss, such as regularization losses. |
Returns | |
---|---|
EstimatorSpec .
|
loss
loss(
labels, logits, features=None, mode=None, regularization_losses=None
)
Returns regularized training loss. See base_head.Head
for details.
metrics
metrics(
regularization_losses=None
)
Creates metrics. See base_head.Head
for details.
predictions
predictions(
logits, keys=None
)
Return predictions based on keys.
See base_head.Head
for details.
Args | |
---|---|
logits
|
logits Tensor with shape [D0, D1, ... DN, logits_dimension] .
For many applications, the shape is [batch_size, logits_dimension] .
|
keys
|
a list or tuple of prediction keys. Each key can be either the class variable of prediction_keys.PredictionKeys or its string value, such as: prediction_keys.PredictionKeys.CLASSES or 'classes'. If not specified, it will return the predictions for all valid keys. |
Returns | |
---|---|
A dict of predictions. |
update_metrics
update_metrics(
eval_metrics, features, logits, labels, regularization_losses=None
)
Updates eval metrics. See base_head.Head
for details.