TensorFlow 1 version | View source on GitHub |
Decorator to define a function with a custom gradient.
tf.custom_gradient(
f=None
)
This decorator allows fine grained control over the gradients of a sequence for operations. This may be useful for multiple reasons, including providing a more efficient or numerically stable gradient for a sequence of operations.
For example, consider the following function that commonly occurs in the computation of cross entropy and log likelihoods:
def log1pexp(x):
return tf.math.log(1 + tf.exp(x))
Due to numerical instability, the gradient of this function evaluated at x=100 is NaN. For example:
x = tf.constant(100.)
y = log1pexp(x)
dy_dx = tf.gradients(y, x) # Will be NaN when evaluated.
The gradient expression can be analytically simplified to provide numerical stability:
@tf.custom_gradient
def log1pexp(x):
e = tf.exp(x)
def grad(upstream):
return upstream * (1 - 1 / (1 + e))
return tf.math.log(1 + e), grad
With this definition, the gradient dy_dx
at x = 100
will be correctly
evaluated as 1.0.
The variable upstream
is defined as the upstream gradient. i.e. the gradient
from all the layers or functions originating from this layer. The above
example has no upstream functions, therefore upstream = dy/dy = 1.0
.
Assume that x_i
is log1pexp
in the forward pass x_1 = x_1(x_0)
,
x_2 = x_2(x_1)
, ..., x_i = x_i(x_i-1)
, ..., x_n = x_n(x_n-1)
. By
chain rule we know that dx_n/dx_0 = dx_n/dx_n-1 * dx_n-1/dx_n-2 * ... *
dx_i/dx_i-1 * ... * dx_1/dx_0
.
In this case the gradient of our current function defined as
dx_i/dx_i-1 = (1 - 1 / (1 + e))
. The upstream gradient upstream
would be
dx_n/dx_n-1 * dx_n-1/dx_n-2 * ... * dx_i+1/dx_i
. The upstream gradient
multiplied by the current gradient is then passed downstream.
In case the function takes multiple variables as input, the grad
function must also return the same number of variables.
We take the function z = x * y
as an example.
@tf.custom_gradient
def bar(x, y):
def grad(upstream):
dz_dx = y
dz_dy = x
return upstream * dz_dx, upstream * dz_dy
z = x * y
return z, grad
x = tf.constant(2.0, dtype=tf.float32)
y = tf.constant(3.0, dtype=tf.float32)
with tf.GradientTape(persistent=True) as tape:
tape.watch(x)
tape.watch(y)
z = bar(x, y)
z
<tf.Tensor: shape=(), dtype=float32, numpy=6.0>
tape.gradient(z, x)
<tf.Tensor: shape=(), dtype=float32, numpy=3.0>
tape.gradient(z, y)
<tf.Tensor: shape=(), dtype=float32, numpy=2.0>
Nesting custom gradients can lead to unintuitive results. The default behavior does not correspond to n-th order derivatives. For example
@tf.custom_gradient
def op(x):
y = op1(x)
@tf.custom_gradient
def grad_fn(dy):
gdy = op2(x, y, dy)
def grad_grad_fn(ddy): # Not the 2nd order gradient of op w.r.t. x.
return op3(x, y, dy, ddy)
return gdy, grad_grad_fn
return y, grad_fn
The function grad_grad_fn
will be calculating the first order gradient
of grad_fn
with respect to dy
, which is used to generate forward-mode
gradient graphs from backward-mode gradient graphs, but is not the same as
the second order gradient of op
with respect to x
.
Instead, wrap nested @tf.custom_gradients
in another function:
@tf.custom_gradient
def op_with_fused_backprop(x):
y, x_grad = fused_op(x)
def first_order_gradient(dy):
@tf.custom_gradient
def first_order_custom(unused_x):
def second_order_and_transpose(ddy):
return second_order_for_x(...), gradient_wrt_dy(...)
return x_grad, second_order_and_transpose
return dy * first_order_custom(x)
return y, first_order_gradient
Additional arguments to the inner @tf.custom_gradient
-decorated function
control the expected return values of the innermost function.
The examples above illustrate how to specify custom gradients for functions which do not read from variables. The following example uses variables, which require special handling because they are effectively inputs of the forward function.
weights = tf.Variable(tf.ones([2])) # Trainable variable weights
@tf.custom_gradient
def linear_poly(x):
# Creating polynomial
poly = weights[1] * x + weights[0]
def grad_fn(dpoly, variables):
# dy/dx = weights[1] and we need to left multiply dpoly
grad_xs = dpoly * weights[1] # Scalar gradient
grad_vars = [] # To store gradients of passed variables
assert variables is not None
assert len(variables) == 1
assert variables[0] is weights
# Manually computing dy/dweights
dy_dw = dpoly * tf.stack([x ** 1, x ** 0])
grad_vars.append(
tf.reduce_sum(tf.reshape(dy_dw, [2, -1]), axis=1)
)
return grad_xs, grad_vars
return poly, grad_fn
x = tf.constant([1., 2., 3.])
with tf.GradientTape(persistent=True) as tape:
tape.watch(x)
poly = linear_poly(x)
poly # poly = x + 1
<tf.Tensor: shape=(3,),
dtype=float32,
numpy=array([2., 3., 4.], dtype=float32)>
tape.gradient(poly, x) # conventional scalar gradient dy/dx
<tf.Tensor: shape=(3,),
dtype=float32,
numpy=array([1., 1., 1.], dtype=float32)>
tape.gradient(poly, weights)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([6., 3.], dtype=float32)>
Above example illustrates usage of trainable variable weights
.
In the example, the inner grad_fn
accepts an extra variables
input
parameter and also returns an extra grad_vars
output. That extra argument
is passed if the forward function reads any variables. You need to
compute the gradient w.r.t. each of those variables
and output it as a list
of grad_vars
. Note here that default value of variables
is set to None
when no variables are used in the forward function.
See also tf.RegisterGradient
which registers a gradient function for a
primitive TensorFlow operation. tf.custom_gradient
on the other hand allows
for fine grained control over the gradient computation of a sequence of
operations.
Note that if the decorated function uses Variable
s, the enclosing variable
scope must be using ResourceVariable
s.
Args | |
---|---|
f
|
function f(*x) that returns a tuple (y, grad_fn) where:
|
Returns | |
---|---|
A function h(x) which returns the same value as f(x)[0] and whose
gradient (as calculated by tf.gradients ) is determined by f(x)[1] .
|