View source on GitHub |
Flattens an input tensor while preserving the batch axis (axis 0).
tf.compat.v1.layers.flatten(
inputs, name=None, data_format='channels_last'
)
Migrate to TF2
This API is not compatible with eager execution ortf.function
.
Please refer to tf.layers section of the migration guide
to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
layer is tf.keras.layers.Flatten
.
Structural Mapping to Native TF2
None of the supported arguments have changed name.
Before:
y = tf.compat.v1.layers.flatten(x)
After:
To migrate code using TF1 functional layers use the Keras Functional API:
x = tf.keras.Input((28, 28, 1))
y = tf.keras.layers.Flatten()(x)
model = tf.keras.Model(x, y)
Description
Args | |
---|---|
inputs
|
Tensor input. |
name
|
The name of the layer (string). |
data_format
|
A string, one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to
inputs with shape (batch, channels, height, width) .
|
Returns | |
---|---|
Reshaped tensor. |
Examples:
x = tf.compat.v1.placeholder(shape=(None, 4, 4), dtype='float32')
y = flatten(x)
# now `y` has shape `(None, 16)`
x = tf.compat.v1.placeholder(shape=(None, 3, None), dtype='float32')
y = flatten(x)
# now `y` has shape `(None, None)`