টেনসরফ্লো :: অপস:: ইউনিফর্ম ক্যান্ডিডেট স্যাম্পলার

#include <candidate_sampling_ops.h>

ইউনিফর্ম ডিস্ট্রিবিউশন সহ প্রার্থীর নমুনা নেওয়ার জন্য লেবেল তৈরি করে।

সারাংশ

go/candidate-sampling-এ প্রার্থীর নমুনা এবং ডেটা ফর্ম্যাটের ব্যাখ্যা দেখুন।

প্রতিটি ব্যাচের জন্য, এই অপশনটি নমুনাযুক্ত প্রার্থী লেবেলের একক সেট বেছে নেয়।

প্রতি-ব্যাচ প্রার্থীদের নমুনা নেওয়ার সুবিধাগুলি হল সরলতা এবং দক্ষ ঘন ম্যাট্রিক্স গুণনের সম্ভাবনা। অসুবিধা হল যে নমুনা প্রার্থীদের অবশ্যই প্রসঙ্গ এবং সত্যিকারের লেবেল থেকে স্বাধীনভাবে বেছে নিতে হবে।

যুক্তি:

  • স্কোপ: একটি স্কোপ অবজেক্ট
  • true_classes: একটি ব্যাচ_সাইজ * num_true ম্যাট্রিক্স, যার প্রতিটি সারিতে সংশ্লিষ্ট মূল লেবেলে num_true টার্গেট_ক্লাসের আইডি রয়েছে।
  • num_true: প্রসঙ্গ প্রতি সত্য লেবেলের সংখ্যা।
  • num_sampled: এলোমেলোভাবে নমুনা দেওয়ার জন্য প্রার্থীদের সংখ্যা।
  • অনন্য: অনন্য সত্য হলে, আমরা প্রত্যাখ্যান সহ নমুনা করি, যাতে একটি ব্যাচের সমস্ত নমুনা প্রার্থী অনন্য হয়। প্রত্যাখ্যান পরবর্তী নমুনা সম্ভাব্যতা অনুমান করার জন্য এটি কিছু আনুমানিক প্রয়োজন।
  • range_max: নমুনাকারী ব্যবধান থেকে পূর্ণসংখ্যার নমুনা করবে [0, range_max)।

ঐচ্ছিক বৈশিষ্ট্য (দেখুন Attrs ):

  • বীজ: যদি বীজ বা বীজ2 অ-শূন্য সেট করা হয়, তাহলে প্রদত্ত বীজ দ্বারা এলোমেলো সংখ্যা জেনারেটর বীজ হয়। অন্যথায়, এটি একটি এলোমেলো বীজ দ্বারা বীজ হয়।
  • বীজ 2: বীজ সংঘর্ষ এড়াতে একটি দ্বিতীয় বীজ।

রিটার্ন:

  • Output স্যাম্পলড_ক্যান্ডিডেটস: দৈর্ঘ্যের একটি ভেক্টর num_sampled, যেখানে প্রতিটি উপাদান হল একজন নমুনা প্রার্থীর ID।
  • Output true_expected_count: একটি ব্যাচ_সাইজ * num_true ম্যাট্রিক্স, নমুনা নেওয়া প্রার্থীদের একটি ব্যাচে প্রতিটি প্রার্থী কতবার ঘটতে পারে তা প্রতিনিধিত্ব করে। যদি অনন্য = সত্য, তাহলে এটি একটি সম্ভাবনা।
  • Output স্যাম্পলড_প্রত্যাশিত_গণনা: দৈর্ঘ্যের একটি ভেক্টর num_sampled, প্রতিটি নমুনা প্রার্থীর জন্য নমুনা নেওয়া প্রার্থীদের একটি ব্যাচে কতবার প্রার্থী হওয়ার প্রত্যাশিত সংখ্যা প্রতিনিধিত্ব করে। যদি অনন্য = সত্য, তাহলে এটি একটি সম্ভাবনা।

কনস্ট্রাক্টর এবং ডেস্ট্রাক্টর

UniformCandidateSampler (const :: tensorflow::Scope & scope, :: tensorflow::Input true_classes, int64 num_true, int64 num_sampled, bool unique, int64 range_max)
UniformCandidateSampler (const :: tensorflow::Scope & scope, :: tensorflow::Input true_classes, int64 num_true, int64 num_sampled, bool unique, int64 range_max, const UniformCandidateSampler::Attrs & attrs)

পাবলিক বৈশিষ্ট্য

operation
sampled_candidates
sampled_expected_count
true_expected_count

পাবলিক স্ট্যাটিক ফাংশন

Seed (int64 x)
Seed2 (int64 x)

কাঠামো

tensorflow:: ops:: UniformCandidateSampler:: Attrs

UniformCandidateSampler- এর জন্য ঐচ্ছিক অ্যাট্রিবিউট সেটার।

পাবলিক বৈশিষ্ট্য

অপারেশন

Operation operation

নমুনা_প্রার্থী

::tensorflow::Output sampled_candidates

নমুনা_প্রত্যাশিত_গণনা

::tensorflow::Output sampled_expected_count

সত্য_প্রত্যাশিত_গণনা

::tensorflow::Output true_expected_count

পাবলিক ফাংশন

ইউনিফর্ম ক্যান্ডিডেট স্যাম্পলার

 UniformCandidateSampler(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input true_classes,
  int64 num_true,
  int64 num_sampled,
  bool unique,
  int64 range_max
)

ইউনিফর্ম ক্যান্ডিডেট স্যাম্পলার

 UniformCandidateSampler(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input true_classes,
  int64 num_true,
  int64 num_sampled,
  bool unique,
  int64 range_max,
  const UniformCandidateSampler::Attrs & attrs
)

পাবলিক স্ট্যাটিক ফাংশন

বীজ

Attrs Seed(
  int64 x
)

বীজ ২

Attrs Seed2(
  int64 x
)