টেনসরফ্লো :: অপস:: SparseApplyFtrl
#include <training_ops.h>
Ftrl-প্রক্সিমাল স্কিম অনুযায়ী '*var'-এ প্রাসঙ্গিক এন্ট্রি আপডেট করুন।
সারাংশ
যে সারিগুলির জন্য আমাদের গ্র্যাড আছে, আমরা var, accum এবং লিনিয়ার আপডেট করি নিম্নরূপ:
$$accum_new = accum + grad * grad$$
$$linear += grad + (accum_{new}^{-lr_{power} } - accum^{-lr_{power} } / lr * var$$
$$quadratic = 1.0 / (accum_{new}^{lr_{power} } * lr) + 2 * l2$$
$$var = (sign(linear) * l1 - linear) / quadratic\ if\ |linear| > l1\ else\ 0.0$$
$$accum = accum_{new}$$
যুক্তি:
- স্কোপ: একটি স্কোপ অবজেক্ট
- var: একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
- accum: একটি পরিবর্তনশীল() থেকে হতে হবে।
- রৈখিক: একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
- grad: গ্রেডিয়েন্ট।
- সূচক: var এবং accum-এর প্রথম মাত্রায় সূচকগুলির একটি ভেক্টর।
- lr: স্কেলিং ফ্যাক্টর। একটি স্কেলার হতে হবে।
- l1: L1 নিয়মিতকরণ। একটি স্কেলার হতে হবে।
- l2: L2 নিয়মিতকরণ। একটি স্কেলার হতে হবে।
- lr_power: স্কেলিং ফ্যাক্টর। একটি স্কেলার হতে হবে।
ঐচ্ছিক বৈশিষ্ট্য (দেখুন Attrs
):
- use_locking: যদি
True
, var এবং accum tensors আপডেট করা একটি লক দ্বারা সুরক্ষিত হবে; অন্যথায় আচরণটি অনির্ধারিত, তবে কম বিরোধ প্রদর্শন করতে পারে।
রিটার্ন:
-
Output
: "var" এর মতোই।
কনস্ট্রাক্টর এবং ডেস্ট্রাক্টর | |
---|---|
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power) | |
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs) |
পাবলিক বৈশিষ্ট্য | |
---|---|
operation | |
out |
পাবলিক ফাংশন | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
পাবলিক স্ট্যাটিক ফাংশন | |
---|---|
MultiplyLinearByLr (bool x) | |
UseLocking (bool x) |
কাঠামো | |
---|---|
tensorflow:: ops:: SparseApplyFtrl:: Attrs | SparseApplyFtrl- এর জন্য ঐচ্ছিক বৈশিষ্ট্য নির্ধারণকারী। |
পাবলিক বৈশিষ্ট্য
অপারেশন
Operation operation
আউট
::tensorflow::Output out
পাবলিক ফাংশন
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power )
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs )
নোড
::tensorflow::Node * node() const
অপারেটর::টেনসরফ্লো::ইনপুট
operator::tensorflow::Input() const
অপারেটর::টেনসরফ্লো::আউটপুট
operator::tensorflow::Output() const
পাবলিক স্ট্যাটিক ফাংশন
গুনিত লিনিয়ারবিএলআর
Attrs MultiplyLinearByLr( bool x )
লকিং ব্যবহার করুন
Attrs UseLocking( bool x )