텐서플로우:: 작전:: SparseApplyFtrlV2
#include <training_ops.h>
Ftrl-proximal 체계에 따라 '*var'의 관련 항목을 업데이트합니다.
요약
즉, grad가 있는 행에 대해 다음과 같이 var, accum 및 선형을 업데이트합니다. grad_with_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad * grad 선형 += grad_with_shrinkage - (accum_new^(-lr_power) - accum^ (-lr_power)) / lr * var 2차 = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (sign(linear) * l1 - 선형) / 2차 if |linear| > l1 else 0.0 accum = accum_new
인수:
- 범위: 범위 개체
- var: Variable()에서 가져와야 합니다.
- accum: Variable()에서 가져와야 합니다.
- 선형: Variable()에서 가져와야 합니다.
- grad: 그라데이션입니다.
- indices: var 및 accum의 첫 번째 차원에 대한 인덱스 벡터입니다.
- lr: 스케일링 팩터. 스칼라여야 합니다.
- l1: L1 정규화. 스칼라여야 합니다.
- l2: L2 수축 정규화. 스칼라여야 합니다.
- lr_power: 스케일링 팩터. 스칼라여야 합니다.
선택적 속성( Attrs
참조):
- use_locking:
True
인 경우 var 및 accum 텐서 업데이트는 잠금으로 보호됩니다. 그렇지 않으면 동작이 정의되지 않지만 경합이 덜 나타날 수 있습니다.
보고:
-
Output
: "var"과 동일합니다.
생성자와 소멸자 | |
---|---|
SparseApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power) | |
SparseApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power, const SparseApplyFtrlV2::Attrs & attrs) |
공개 속성 | |
---|---|
operation | |
out |
공공 기능 | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
공개 정적 함수 | |
---|---|
MultiplyLinearByLr (bool x) | |
UseLocking (bool x) |
구조체 | |
---|---|
텐서플로우:: ops:: SparseApplyFtrlV2:: Attrs | SparseApplyFtrlV2 에 대한 선택적 속성 설정자입니다. |
공개 속성
작업
Operation operation
밖으로
::tensorflow::Output out
공공 기능
SparseApplyFtrlV2
SparseApplyFtrlV2( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power )
SparseApplyFtrlV2
SparseApplyFtrlV2( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power, const SparseApplyFtrlV2::Attrs & attrs )
마디
::tensorflow::Node * node() const
연산자::텐서플로우::입력
operator::tensorflow::Input() const
연산자::텐서플로우::출력
operator::tensorflow::Output() const
공개 정적 함수
곱하기선형ByLr
Attrs MultiplyLinearByLr( bool x )
사용잠금
Attrs UseLocking( bool x )