टेंसरफ़्लो:: ऑप्स:: रिसोर्सस्पार्सएप्लाईFtrl
#include <training_ops.h>
Ftrl-प्रॉक्सिमल योजना के अनुसार '*var' में प्रासंगिक प्रविष्टियाँ अपडेट करें।
सारांश
यानी उन पंक्तियों के लिए जिनके लिए हमारे पास ग्रेड है, हम var, accum और रैखिक को निम्नानुसार अपडेट करते हैं: accum_new = accum + grad * grad Linear += grad - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var द्विघात = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (चिह्न (रैखिक) * l1 - रैखिक) / द्विघात यदि |रैखिक| > एल1 अन्यथा 0.0 संचय = संचय_नया
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- var: एक वेरिएबल() से होना चाहिए।
- संचय: एक वेरिएबल() से होना चाहिए।
- रैखिक: एक वेरिएबल() से होना चाहिए।
- ग्रेड: ग्रेडिएंट.
- सूचकांक: var और accum के पहले आयाम में सूचकांकों का एक वेक्टर।
- एलआर: स्केलिंग कारक। एक अदिश राशि होनी चाहिए.
- एल1: एल1 नियमितीकरण। एक अदिश राशि होनी चाहिए.
- एल2: एल2 नियमितीकरण। एक अदिश राशि होनी चाहिए.
- lr_power: स्केलिंग कारक। एक अदिश राशि होनी चाहिए.
वैकल्पिक विशेषताएँ (देखें Attrs
):
- उपयोग_लॉकिंग: यदि
True
, तो var और Accum Tensors का अद्यतनीकरण लॉक द्वारा संरक्षित किया जाएगा; अन्यथा व्यवहार अपरिभाषित है, लेकिन कम विवाद प्रदर्शित कर सकता है।
रिटर्न:
- बनाया गया
Operation
निर्माता और विध्वंसक | |
---|---|
ResourceSparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power) | |
ResourceSparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const ResourceSparseApplyFtrl::Attrs & attrs) |
सार्वजनिक गुण | |
---|---|
operation |
सार्वजनिक समारोह | |
---|---|
operator::tensorflow::Operation () const |
सार्वजनिक स्थैतिक कार्य | |
---|---|
MultiplyLinearByLr (bool x) | |
UseLocking (bool x) |
संरचनाएँ | |
---|---|
टेंसरफ्लो:: ऑप्स:: रिसोर्सस्पार्सएप्लाईFtrl:: एटर्स | resourceSparseApplyFtrl के लिए वैकल्पिक विशेषता सेटर। |
सार्वजनिक गुण
संचालन
Operation operation
सार्वजनिक समारोह
रिसोर्सस्पार्सएप्लाईFtrl
ResourceSparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power )
रिसोर्सस्पार्सएप्लाईFtrl
ResourceSparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power, const ResourceSparseApplyFtrl::Attrs & attrs )
ऑपरेटर::टेन्सरफ़्लो::ऑपरेशन
operator::tensorflow::Operation() const
सार्वजनिक स्थैतिक कार्य
MultiplyLinearByLr
Attrs MultiplyLinearByLr( bool x )
लॉकिंग का उपयोग करें
Attrs UseLocking( bool x )