tensorflow::ops::ResourceSparseApplyCenteredRMSProp

#include <training_ops.h>

Update '*var' according to the centered RMSProp algorithm.

Summary

The centered RMSProp algorithm uses an estimate of the centered second moment (i.e., the variance) for normalization, as opposed to regular RMSProp, which uses the (uncentered) second moment. This often helps with training, but is slightly more expensive in terms of computation and memory.

Note that in dense implementation of this algorithm, mg, ms, and mom will update even if the grad is zero, but in this sparse implementation, mg, ms, and mom will not update in iterations during which the grad is zero.

mean_square = decay * mean_square + (1-decay) * gradient ** 2 mean_grad = decay * mean_grad + (1-decay) * gradient Delta = learning_rate * gradient / sqrt(mean_square + epsilon - mean_grad ** 2)

ms <- rho * ms_{t-1} + (1-rho) * grad * grad mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) var <- var - mom

Arguments:

  • scope: A Scope object
  • var: Should be from a Variable().
  • mg: Should be from a Variable().
  • ms: Should be from a Variable().
  • mom: Should be from a Variable().
  • lr: Scaling factor. Must be a scalar.
  • rho: Decay rate. Must be a scalar.
  • epsilon: Ridge term. Must be a scalar.
  • grad: The gradient.
  • indices: A vector of indices into the first dimension of var, ms and mom.

Optional attributes (see Attrs):

  • use_locking: If True, updating of the var, mg, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

Constructors and Destructors

ResourceSparseApplyCenteredRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input mg, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices)
ResourceSparseApplyCenteredRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input mg, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices, const ResourceSparseApplyCenteredRMSProp::Attrs & attrs)

Public attributes

operation

Public functions

operator::tensorflow::Operation() const

Public static functions

UseLocking(bool x)

Structs

tensorflow::ops::ResourceSparseApplyCenteredRMSProp::Attrs

Optional attribute setters for ResourceSparseApplyCenteredRMSProp.

Public attributes

operation

Operation operation

Public functions

ResourceSparseApplyCenteredRMSProp

 ResourceSparseApplyCenteredRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input mg,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices
)

ResourceSparseApplyCenteredRMSProp

 ResourceSparseApplyCenteredRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input mg,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  const ResourceSparseApplyCenteredRMSProp::Attrs & attrs
)

operator::tensorflow::Operation

 operator::tensorflow::Operation() const 

Public static functions

UseLocking

Attrs UseLocking(
  bool x
)