tensor akışı:: işlem:: MatrixSetDiagV3
#include <array_ops.h>
Yeni toplu çapraz değerlere sahip toplu matris tensörünü döndürür.
Özet
input
ve diagonal
verildiğinde, bu işlem, en içteki matrislerin belirtilen köşegenleri dışında, input
ile aynı şekil ve değerlere sahip bir tensör döndürür. Bunların üzerine diagonal
değerler yazılacaktır.
input
r+1
boyutu vardır [I, J, ..., L, M, N]
. k
skaler olduğunda veya k[0] == k[1]
olduğunda, diagonal
r
boyutlara sahiptir [I, J, ..., L, max_diag_len]
. Aksi takdirde, r+1
boyutları vardır [I, J, ..., L, num_diags, max_diag_len]
. num_diags
köşegenlerin sayısıdır, num_diags = k[1] - k[0] + 1
. max_diag_len
[k[0], k[1]]
aralığındaki en uzun köşegendir max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
Çıkış [I, J, ..., L, M, N]
boyutlarına sahip k+1
dereceli bir tensördür. Eğer k
skaler veya k[0] == k[1]
:
output[i, j, ..., l, m, n] = diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1] input[i, j, ..., l, m, n] ; otherwise
Aksi takdirde,
output[i, j, ..., l, m, n] = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1] input[i, j, ..., l, m, n] ; otherwiseburada
d = n - m
, diag_index = k[1] - d
ve index_in_diag = n - max(d, 0) + offset
. köşegen hizalamasının sağa olması dışında offset
sıfırdır.
offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT} and `d >= 0`) or (`align` in {LEFT_RIGHT, RIGHT_RIGHT} and `d <= 0`) 0 ; otherwiseburada
diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))
.Örneğin:
# The main diagonal. input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4) [7, 7, 7, 7], [7, 7, 7, 7]], [[7, 7, 7, 7], [7, 7, 7, 7], [7, 7, 7, 7]]]) diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3) [4, 5, 6]]) tf.matrix_set_diag(input, diagonal) ==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4) [7, 2, 7, 7], [7, 7, 3, 7]], [[4, 7, 7, 7], [7, 5, 7, 7], [7, 7, 6, 7]]]
# A superdiagonal (per batch). tf.matrix_set_diag(input, diagonal, k = 1) ==> [[[7, 1, 7, 7], # Output shape: (2, 3, 4) [7, 7, 2, 7], [7, 7, 7, 3]], [[7, 4, 7, 7], [7, 7, 5, 7], [7, 7, 7, 6]]]
# A band of diagonals. diagonals = np.array([[[0, 9, 1], # Diagonal shape: (2, 4, 3) [6, 5, 8], [1, 2, 3], [4, 5, 0]], [[0, 1, 2], [5, 6, 4], [6, 1, 2], [3, 4, 0]]]) tf.matrix_set_diag(input, diagonals, k = (-1, 2)) ==> [[[1, 6, 9, 7], # Output shape: (2, 3, 4) [4, 2, 5, 1], [7, 5, 3, 8]], [[6, 5, 1, 7], [3, 1, 6, 2], [7, 4, 2, 4]]]
# LEFT_RIGHT alignment. diagonals = np.array([[[9, 1, 0], # Diagonal shape: (2, 4, 3) [6, 5, 8], [1, 2, 3], [0, 4, 5]], [[1, 2, 0], [5, 6, 4], [6, 1, 2], [0, 3, 4]]]) tf.matrix_set_diag(input, diagonals, k = (-1, 2), align="LEFT_RIGHT") ==> [[[1, 6, 9, 7], # Output shape: (2, 3, 4) [4, 2, 5, 1], [7, 5, 3, 8]], [[6, 5, 1, 7], [3, 1, 6, 2], [7, 4, 2, 4]]]
Arguments:
- scope: A Scope object
- input: Rank
r+1
, wherer >= 1
. - diagonal: Rank
r
whenk
is an integer ork[0] == k[1]
. Otherwise, it has rankr+1
.k >= 1
. - k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals.
k
can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band.k[0]
must not be larger thank[1]
.
Optional attributes (see Attrs
):
- align: Some diagonals are shorter than
max_diag_len
and need to be padded.align
is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. There are four possible alignments: "RIGHT_LEFT" (default), "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). It is the packing format LAPACK uses. cuSPARSE uses "LEFT_RIGHT", which is the opposite alignment.
Returns:
Output
: Rankr+1
, withoutput.shape = input.shape
.
Constructors and Destructors |
|
---|---|
MatrixSetDiagV3(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input diagonal, ::tensorflow::Input k)
|
|
MatrixSetDiagV3(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input diagonal, ::tensorflow::Input k, const MatrixSetDiagV3::Attrs & attrs)
|
Public attributes |
|
---|---|
operation
|
|
output
|
Public functions |
|
---|---|
node() const
|
::tensorflow::Node *
|
operator::tensorflow::Input() const
|
|
operator::tensorflow::Output() const
|
|
Public static functions |
|
---|---|
Align(StringPiece x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for MatrixSetDiagV3. |
Public attributes
operation
Operation operation
çıktı
::tensorflow::Output output
Kamu işlevleri
MatrixSetDiagV3
MatrixSetDiagV3( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input diagonal, ::tensorflow::Input k )
MatrixSetDiagV3
MatrixSetDiagV3( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input diagonal, ::tensorflow::Input k, const MatrixSetDiagV3::Attrs & attrs )
düğüm
::tensorflow::Node * node() const
operatör::tensorflow::Giriş
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Genel statik işlevler
Hizala
Attrs Align( StringPiece x )