جریان تنسور:: عملیات:: ExtractVolumePatches

#include <array_ops.h>

patches از input استخراج کنید و آنها را در بعد خروجی "عمق" قرار دهید.

خلاصه

پسوند 3 بعدی extract_image_patches .

استدلال ها:

  • scope: یک شی Scope
  • ورودی: تانسور 5 بعدی با شکل [batch, in_planes, in_rows, in_cols, depth] .
  • ksizes: اندازه پنجره کشویی برای هر بعد input .
  • گام ها: 1-D به طول 5. فاصله مراکز دو تکه متوالی در input چقدر است. باید: [1, stride_planes, stride_rows, stride_cols, 1] .
  • padding: نوع الگوریتم padding مورد استفاده.

ما ویژگی های مربوط به اندازه را به صورت زیر مشخص می کنیم:

      ksizes = [1, ksize_planes, ksize_rows, ksize_cols, 1]
      strides = [1, stride_planes, strides_rows, strides_cols, 1]

برمی گرداند:

  • Output : تانسور 5 بعدی با شکل [batch, out_planes, out_rows, out_cols, ksize_planes * ksize_rows * ksize_cols * depth] حاوی تکه‌هایی با اندازه ksize_planes x ksize_rows x ksize_cols x depth بردار در ابعاد "depth". توجه داشته باشید out_planes ، out_rows و out_cols ابعاد وصله‌های خروجی هستند.

سازندگان و ویرانگرها

ExtractVolumePatches (const :: tensorflow::Scope & scope, :: tensorflow::Input input, const gtl::ArraySlice< int > & ksizes, const gtl::ArraySlice< int > & strides, StringPiece padding)

صفات عمومی

operation
patches

توابع عمومی

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

صفات عمومی

عملیات

Operation operation

تکه ها

::tensorflow::Output patches

توابع عمومی

ExtractVolumePatches

 ExtractVolumePatches(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input input,
  const gtl::ArraySlice< int > & ksizes,
  const gtl::ArraySlice< int > & strides,
  StringPiece padding
)

گره

::tensorflow::Node * node() const 

عملگر::tensorflow::ورودی

 operator::tensorflow::Input() const 

عملگر::tensorflow::خروجی

 operator::tensorflow::Output() const