tensorflow:: ops:: DeserializeSparse
#include <sparse_ops.h>
Deserialize SparseTensor
objects.
Summary
The input serialized_sparse
must have the shape [?, ?, ..., ?, 3]
where the last dimension stores serialized SparseTensor
objects and the other N dimensions (N >= 0) correspond to a batch. The ranks of the original SparseTensor
objects must all match. When the final SparseTensor
is created, its rank is the rank of the incoming SparseTensor
objects plus N; the sparse tensors have been concatenated along new dimensions, one for each batch.
The output SparseTensor
object's shape values for the original dimensions are the max across the input SparseTensor
objects' shape values for the corresponding dimensions. The new dimensions match the size of the batch.
The input SparseTensor
objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run SparseReorder
to restore index ordering.
For example, if the serialized input is a [2 x 3]
matrix representing two original SparseTensor
objects:
index = [ 0] [10] [20] values = [1, 2, 3] shape = [50]
and
index = [ 2] [10] values = [4, 5] shape = [30]
then the final deserialized SparseTensor
will be:
index = [0 0] [0 10] [0 20] [1 2] [1 10] values = [1, 2, 3, 4, 5] shape = [2 50]
Arguments:
- scope: A Scope object
- serialized_sparse: The serialized
SparseTensor
objects. The last dimension must have 3 columns. - dtype: The
dtype
of the serializedSparseTensor
objects.
Returns:
Constructors and Destructors |
|
---|---|
DeserializeSparse(const ::tensorflow::Scope & scope, ::tensorflow::Input serialized_sparse, DataType dtype)
|
Public attributes |
|
---|---|
operation
|
|
sparse_indices
|
|
sparse_shape
|
|
sparse_values
|
Public attributes
operation
Operation operation
sparse_indices
::tensorflow::Output sparse_indices
sparse_shape
::tensorflow::Output sparse_shape
sparse_values
::tensorflow::Output sparse_values
Public functions
DeserializeSparse
DeserializeSparse( const ::tensorflow::Scope & scope, ::tensorflow::Input serialized_sparse, DataType dtype )