przepływ tensorowy:: ops:: ZastosujFtrl

#include <training_ops.h>

Zaktualizuj „*var” zgodnie ze schematem Ftrl-proksymalny.

Streszczenie

accum_new = accum + grad * grad liniowy += grad - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var kwadratowy = 1,0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (znak(liniowy) * l1 - liniowy) / kwadratowy jeśli |liniowy| > l1 else 0,0 accum = accum_new

Argumenty:

  • zakres: Obiekt Scope
  • var: Powinien pochodzić ze zmiennej ().
  • accum: Powinien pochodzić ze zmiennej ().
  • liniowy: powinien pochodzić ze zmiennej ().
  • grad: gradient.
  • lr: Współczynnik skalowania. Musi być skalarem.
  • l1: Regularyzacja L1. Musi być skalarem.
  • l2: Regularyzacja L2. Musi być skalarem.
  • lr_power: Współczynnik skalowania. Musi być skalarem.

Opcjonalne atrybuty (patrz Attrs ):

  • use_locking: Jeśli True , aktualizacja tensorów var i accum będzie chroniona blokadą; w przeciwnym razie zachowanie jest niezdefiniowane, ale może wykazywać mniejszą rywalizację.

Zwroty:

  • Output : takie same jak „var”.

Konstruktory i destruktory

ApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power)
ApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const ApplyFtrl::Attrs & attrs)

Atrybuty publiczne

operation
out

Funkcje publiczne

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

Publiczne funkcje statyczne

MultiplyLinearByLr (bool x)
UseLocking (bool x)

Struktury

tensorflow:: ops:: ApplyFtrl:: Attrs

Opcjonalne moduły ustawiające atrybuty dla ApplyFtrl .

Atrybuty publiczne

działanie

Operation operation

na zewnątrz

::tensorflow::Output out

Funkcje publiczne

ZastosujFtrl

 ApplyFtrl(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input lr_power
)

ZastosujFtrl

 ApplyFtrl(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input lr_power,
  const ApplyFtrl::Attrs & attrs
)

węzeł

::tensorflow::Node * node() const 

operator::tensorflow::Wejście

 operator::tensorflow::Input() const 

operator::tensorflow::Wyjście

 operator::tensorflow::Output() const 

Publiczne funkcje statyczne

PomnóżLiniowoPrzezLr

Attrs MultiplyLinearByLr(
  bool x
)

Użyj Blokowania

Attrs UseLocking(
  bool x
)