tensorflow :: ops :: ApplyCenteredRMSProp

#include <training_ops.h>

Atualize '* var' de acordo com o algoritmo RMSProp centralizado.

Resumo

O algoritmo RMSProp centralizado usa uma estimativa do segundo momento centrado (ou seja, a variância) para normalização, ao contrário do RMSProp regular, que usa o segundo momento (não centrado). Isso geralmente ajuda no treinamento, mas é um pouco mais caro em termos de computação e memória.

Observe que na implementação densa deste algoritmo, mg, ms e mom serão atualizados mesmo se o grad for zero, mas nesta implementação esparsa, mg, ms e mom não serão atualizados em iterações durante as quais o grad é zero.

média_quadrada = decadência * média_quadrada + (1-decadência) * gradiente ** 2 média_grad = decadência * média_grad + (1-decadência) * gradiente

Delta = learning_rate * gradiente / sqrt (mean_square + epsilon - mean_grad ** 2)

mg <- rho * mg_ {t-1} + (1-rho) * grad ms <- rho * ms_ {t-1} + (1-rho) * grad * grad mãe <- momento * mãe_ {t-1 } + lr * grad / sqrt (ms - mg * mg + epsilon) var <- var - mãe

Argumentos:

  • escopo: um objeto Scope
  • var: deve ser de uma variável ().
  • mg: deve ser de uma variável ().
  • ms: deve ser de uma variável ().
  • mãe: deve ser de uma variável ().
  • lr: Fator de escala. Deve ser um escalar.
  • rho: Taxa de decaimento. Deve ser um escalar.
  • epsilon: termo de cume. Deve ser um escalar.
  • grad: O gradiente.

Atributos opcionais (consulte Attrs ):

  • use_locking: se True , a atualização dos tensores var, mg, ms e mom é protegida por um bloqueio; caso contrário, o comportamento é indefinido, mas pode exibir menos contenção.

Retorna:

Construtores e Destruidores

ApplyCenteredRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input mg, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
ApplyCenteredRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input mg, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ApplyCenteredRMSProp::Attrs & attrs)

Atributos públicos

operation
out

Funções públicas

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

Funções estáticas públicas

UseLocking (bool x)

Structs

tensorflow :: ops :: ApplyCenteredRMSProp :: Attrs

Configuradores de atributos opcionais para ApplyCenteredRMSProp .

Atributos públicos

Operação

Operation operation

Fora

::tensorflow::Output out

Funções públicas

ApplyCenteredRMSProp

 ApplyCenteredRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input mg,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad
)

ApplyCenteredRMSProp

 ApplyCenteredRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input mg,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad,
  const ApplyCenteredRMSProp::Attrs & attrs
)

::tensorflow::Node * node() const 

operador :: tensorflow :: Input

 operator::tensorflow::Input() const 

operador :: tensorflow :: Saída

 operator::tensorflow::Output() const 

Funções estáticas públicas

UseLocking

Attrs UseLocking(
  bool x
)