tensorflow:: ops:: ApplyAdagrad
#include <training_ops.h>
Update '*var' according to the adagrad scheme.
Summary
accum += grad * grad var -= lr * grad * (1 / sqrt(accum))
Arguments:
- scope: A Scope object
- var: Should be from a Variable().
- accum: Should be from a Variable().
- lr: Scaling factor. Must be a scalar.
- grad: The gradient.
Optional attributes (see Attrs
):
- use_locking: If
True
, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
Output
: Same as "var".
Constructors and Destructors |
|
---|---|
ApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad)
|
|
ApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, const ApplyAdagrad::Attrs & attrs)
|
Public attributes |
|
---|---|
operation
|
|
out
|
Public functions |
|
---|---|
node() const
|
::tensorflow::Node *
|
operator::tensorflow::Input() const
|
|
operator::tensorflow::Output() const
|
|
Public static functions |
|
---|---|
UpdateSlots(bool x)
|
|
UseLocking(bool x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for ApplyAdagrad. |
Public attributes
operation
Operation operation
out
::tensorflow::Output out
Public functions
ApplyAdagrad
ApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad )
ApplyAdagrad
ApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, const ApplyAdagrad::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
UpdateSlots
Attrs UpdateSlots( bool x )
UseLocking
Attrs UseLocking( bool x )