tf.keras.losses.categorical_hinge
Stay organized with collections
Save and categorize content based on your preferences.
Computes the categorical hinge loss between y_true
& y_pred
.
tf.keras.losses.categorical_hinge(
y_true, y_pred
)
loss = maximum(neg - pos + 1, 0)
where neg=maximum((1-y_true)*y_pred) and pos=sum(y_true*y_pred)
Standalone usage:
y_true = np.random.randint(0, 3, size=(2,))
y_true = tf.keras.utils.to_categorical(y_true, num_classes=3)
y_pred = np.random.random(size=(2, 3))
loss = tf.keras.losses.categorical_hinge(y_true, y_pred)
assert loss.shape == (2,)
pos = np.sum(y_true * y_pred, axis=-1)
neg = np.amax((1. - y_true) * y_pred, axis=-1)
assert np.array_equal(loss.numpy(), np.maximum(0., neg - pos + 1.))
Args |
y_true
|
The ground truth values. y_true values are expected to be
either {-1, +1} or {0, 1} (i.e. a one-hot-encoded tensor).
|
y_pred
|
The predicted values.
|
Returns |
Categorical hinge loss values.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[],[]]