A Tensor, SparseTensor, or dict of string or int to Tensor
or SparseTensor, specifying the features to be passed to the model.
Note: if features passed is not a dict, it will be wrapped in a dict
with a single entry, using 'feature' as the key. Consequently, the
model
must accept a feature dict of the form {'feature': tensor}. You may use
TensorServingInputReceiver if you want the tensor to be passed as is.
receiver_tensors
A Tensor, SparseTensor, or dict of string to Tensor
or SparseTensor, specifying input nodes where this receiver expects to
be fed by default. Typically, this is a single placeholder expecting
serialized tf.Example protos.
receiver_tensors_alternatives
a dict of string to additional groups of
receiver tensors, each of which may be a Tensor, SparseTensor, or dict
of string to Tensor orSparseTensor. These named receiver tensor
alternatives generate additional serving signatures, which may be used to
feed inputs at different points within the input receiver subgraph. A
typical usage is to allow feeding raw feature Tensors downstream of
the tf.parse_example() op. Defaults to None.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[],[]]