tensorflow::ops::ApplyPowerSign
#include <training_ops.h>
Update '*var' according to the AddSign update.
Summary
m_t <- beta1 * m_{t-1} + (1 - beta1) * g update <- exp(logbase * sign_decay * sign(g) * sign(m_t)) * g variable <- variable - lr_t * update
Args:
- scope: A Scope object
- var: Should be from a Variable().
- m: Should be from a Variable().
- lr: Scaling factor. Must be a scalar.
- logbase: Must be a scalar.
- sign_decay: Must be a scalar.
- beta: Must be a scalar.
- grad: The gradient.
Optional attributes (see Attrs
):
- use_locking: If
True
, updating of the var and m tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
Output
: Same as "var".
Constructors and Destructors |
|
---|---|
ApplyPowerSign(const ::
|
|
ApplyPowerSign(const ::
|
Public functions |
|
---|---|
node() const
|
::tensorflow::Node *
|
operator::tensorflow::Input() const
|
|
operator::tensorflow::Output() const
|
|
Public static functions |
|
---|---|
UseLocking(bool x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for ApplyPowerSign. |
Public attributes
operation
Operation operation
out
::tensorflow::Output out
Public functions
ApplyPowerSign
ApplyPowerSign( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input m, ::tensorflow::Input lr, ::tensorflow::Input logbase, ::tensorflow::Input sign_decay, ::tensorflow::Input beta, ::tensorflow::Input grad )
ApplyPowerSign
ApplyPowerSign( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input m, ::tensorflow::Input lr, ::tensorflow::Input logbase, ::tensorflow::Input sign_decay, ::tensorflow::Input beta, ::tensorflow::Input grad, const ApplyPowerSign::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
UseLocking
Attrs UseLocking( bool x )