ดูบน TensorFlow.org | ทำงานใน Google Colab | ดูแหล่งที่มาบน GitHub | ดาวน์โหลดโน๊ตบุ๊ค |
นี่คือไฟล์สมุดบันทึก Google Colaboratory โปรแกรม Python ทำงานโดยตรงในเบราว์เซอร์ ซึ่งเป็นวิธีที่ยอดเยี่ยมในการเรียนรู้และใช้งาน TensorFlow หากต้องการทำตามบทแนะนำนี้ ให้เรียกใช้สมุดบันทึกใน Google Colab โดยคลิกปุ่มที่ด้านบนของหน้านี้
- ใน Colab ให้เชื่อมต่อกับรันไทม์ของ Python: ที่ด้านบนขวาของแถบเมนู ให้เลือก CONNECT
- เรียกใช้เซลล์โค้ดของสมุดบันทึกทั้งหมด: เลือก รันไทม์ > เรียกใช้ทั้งหมด
ดาวน์โหลดและติดตั้ง TensorFlow 2 นำเข้า TensorFlow ลงในโปรแกรมของคุณ:
นำเข้า TensorFlow ลงในโปรแกรมของคุณ:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
TensorFlow version: 2.8.0-rc1
โหลดและเตรียม ชุดข้อมูล MNIST
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Add a channels dimension
x_train = x_train[..., tf.newaxis].astype("float32")
x_test = x_test[..., tf.newaxis].astype("float32")
ใช้ tf.data
เพื่อแบทช์และสับเปลี่ยนชุดข้อมูล:
train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
สร้างโมเดล tf.keras
โดยใช้ Keras model subclassing API :
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10)
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
# Create an instance of the model
model = MyModel()
เลือกเครื่องมือเพิ่มประสิทธิภาพและการสูญเสียสำหรับการฝึกอบรม:
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam()
เลือกเมตริกเพื่อวัดการสูญเสียและความถูกต้องของแบบจำลอง เมตริกเหล่านี้จะสะสมค่าในช่วงเวลาต่างๆ แล้วพิมพ์ผลลัพธ์โดยรวม
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
ใช้ tf.GradientTape
เพื่อฝึกโมเดล:
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
# training=True is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=True)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
ทดสอบโมเดล:
@tf.function
def test_step(images, labels):
# training=False is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=False)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
EPOCHS = 5
for epoch in range(EPOCHS):
# Reset the metrics at the start of the next epoch
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for images, labels in train_ds:
train_step(images, labels)
for test_images, test_labels in test_ds:
test_step(test_images, test_labels)
print(
f'Epoch {epoch + 1}, '
f'Loss: {train_loss.result()}, '
f'Accuracy: {train_accuracy.result() * 100}, '
f'Test Loss: {test_loss.result()}, '
f'Test Accuracy: {test_accuracy.result() * 100}'
)
Epoch 1, Loss: 0.13306719064712524, Accuracy: 96.03833770751953, Test Loss: 0.0717063844203949, Test Accuracy: 97.68999481201172 Epoch 2, Loss: 0.04493752866983414, Accuracy: 98.61833190917969, Test Loss: 0.058997876942157745, Test Accuracy: 98.18000030517578 Epoch 3, Loss: 0.023821160197257996, Accuracy: 99.22000122070312, Test Loss: 0.0560370571911335, Test Accuracy: 98.30999755859375 Epoch 4, Loss: 0.014193248935043812, Accuracy: 99.50666809082031, Test Loss: 0.06797954440116882, Test Accuracy: 98.29999542236328 Epoch 5, Loss: 0.010457769967615604, Accuracy: 99.63666534423828, Test Loss: 0.08524733036756516, Test Accuracy: 97.83999633789062
ตัวแยกประเภทรูปภาพได้รับการฝึกฝนให้มีความแม่นยำประมาณ 98% ในชุดข้อมูลนี้ หากต้องการเรียนรู้เพิ่มเติม โปรดอ่าน บทแนะนำ TensorFlow