Muat panda DataFrame

Lihat di TensorFlow.org Jalankan di Google Colab Lihat sumber di GitHub Unduh buku catatan

Tutorial ini memberikan contoh cara memuat panda DataFrames ke TensorFlow.

Anda akan menggunakan kumpulan data penyakit jantung kecil yang disediakan oleh UCI Machine Learning Repository. Ada beberapa ratus baris di CSV. Setiap baris menggambarkan pasien, dan setiap kolom menggambarkan atribut. Anda akan menggunakan informasi ini untuk memprediksi apakah pasien memiliki penyakit jantung, yang merupakan tugas klasifikasi biner.

Baca data menggunakan panda

import pandas as pd
import tensorflow as tf

SHUFFLE_BUFFER = 500
BATCH_SIZE = 2

Unduh file CSV yang berisi kumpulan data penyakit jantung:

csv_file = tf.keras.utils.get_file('heart.csv', 'https://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/heart.csv
16384/13273 [=====================================] - 0s 0us/step
24576/13273 [=======================================================] - 0s 0us/step

Baca file CSV menggunakan panda:

df = pd.read_csv(csv_file)

Berikut tampilan datanya:

df.head()
df.dtypes
age           int64
sex           int64
cp            int64
trestbps      int64
chol          int64
fbs           int64
restecg       int64
thalach       int64
exang         int64
oldpeak     float64
slope         int64
ca            int64
thal         object
target        int64
dtype: object

Anda akan membangun model untuk memprediksi label yang terdapat di kolom target .

target = df.pop('target')

DataFrame sebagai array

Jika data Anda memiliki tipe data yang seragam, atau dtype , Anda dapat menggunakan pandas DataFrame di mana pun Anda dapat menggunakan array NumPy. Ini berfungsi karena kelas pandas.DataFrame mendukung protokol __array__ , dan fungsi tf.convert_to_tensor menerima objek yang mendukung protokol.

Ambil fitur numerik dari kumpulan data (lewati fitur kategoris untuk saat ini):

numeric_feature_names = ['age', 'thalach', 'trestbps',  'chol', 'oldpeak']
numeric_features = df[numeric_feature_names]
numeric_features.head()

DataFrame dapat dikonversi ke array NumPy menggunakan properti DataFrame.values atau numpy.array(df) . Untuk mengubahnya menjadi tensor, gunakan tf.convert_to_tensor :

tf.convert_to_tensor(numeric_features)
<tf.Tensor: shape=(303, 5), dtype=float64, numpy=
array([[ 63. , 150. , 145. , 233. ,   2.3],
       [ 67. , 108. , 160. , 286. ,   1.5],
       [ 67. , 129. , 120. , 229. ,   2.6],
       ...,
       [ 65. , 127. , 135. , 254. ,   2.8],
       [ 48. , 150. , 130. , 256. ,   0. ],
       [ 63. , 154. , 150. , 407. ,   4. ]])>

Secara umum, jika sebuah objek dapat dikonversi menjadi tensor dengan tf.convert_to_tensor , objek tersebut dapat diteruskan ke mana pun Anda dapat melewati tf.Tensor .

Dengan Model.fit

DataFrame, yang ditafsirkan sebagai tensor tunggal, dapat digunakan secara langsung sebagai argumen untuk metode Model.fit .

Di bawah ini adalah contoh pelatihan model pada fitur numerik dari dataset.

Langkah pertama adalah menormalkan rentang input. Gunakan lapisan tf.keras.layers.Normalization untuk itu.

Untuk mengatur mean layer dan deviasi standar sebelum menjalankannya, pastikan untuk memanggil metode Normalization.adapt :

normalizer = tf.keras.layers.Normalization(axis=-1)
normalizer.adapt(numeric_features)

Panggil layer pada tiga baris pertama DataFrame untuk memvisualisasikan contoh output dari layer ini:

normalizer(numeric_features.iloc[:3])
<tf.Tensor: shape=(3, 5), dtype=float32, numpy=
array([[ 0.93383914,  0.03480718,  0.74578077, -0.26008663,  1.0680453 ],
       [ 1.3782105 , -1.7806165 ,  1.5923285 ,  0.7573877 ,  0.38022864],
       [ 1.3782105 , -0.87290466, -0.6651321 , -0.33687714,  1.3259765 ]],
      dtype=float32)>

Gunakan lapisan normalisasi sebagai lapisan pertama dari model sederhana:

def get_basic_model():
  model = tf.keras.Sequential([
    normalizer,
    tf.keras.layers.Dense(10, activation='relu'),
    tf.keras.layers.Dense(10, activation='relu'),
    tf.keras.layers.Dense(1)
  ])

  model.compile(optimizer='adam',
                loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
                metrics=['accuracy'])
  return model

Saat Anda meneruskan DataFrame sebagai argumen x ke Model.fit , Keras memperlakukan DataFrame seperti halnya array NumPy:

model = get_basic_model()
model.fit(numeric_features, target, epochs=15, batch_size=BATCH_SIZE)
Epoch 1/15
152/152 [==============================] - 1s 2ms/step - loss: 0.6839 - accuracy: 0.7690
Epoch 2/15
152/152 [==============================] - 0s 2ms/step - loss: 0.5789 - accuracy: 0.7789
Epoch 3/15
152/152 [==============================] - 0s 2ms/step - loss: 0.5195 - accuracy: 0.7723
Epoch 4/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4814 - accuracy: 0.7855
Epoch 5/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4566 - accuracy: 0.7789
Epoch 6/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4427 - accuracy: 0.7888
Epoch 7/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4342 - accuracy: 0.7921
Epoch 8/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4290 - accuracy: 0.7855
Epoch 9/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4240 - accuracy: 0.7987
Epoch 10/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4232 - accuracy: 0.7987
Epoch 11/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4208 - accuracy: 0.7987
Epoch 12/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4186 - accuracy: 0.7954
Epoch 13/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4172 - accuracy: 0.8020
Epoch 14/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4156 - accuracy: 0.8020
Epoch 15/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4138 - accuracy: 0.8020
<keras.callbacks.History at 0x7f1ddc27b110>

Dengan tf.data

Jika Anda ingin menerapkan transformasi tf.data ke DataFrame dengan tipe d yang seragam, Dataset.from_tensor_slices dtype membuat kumpulan data yang berulang pada baris DataFrame. Setiap baris awalnya merupakan vektor nilai. Untuk melatih model, Anda memerlukan pasangan (inputs, labels) , jadi pass (features, labels) dan Dataset.from_tensor_slices akan mengembalikan pasangan irisan yang diperlukan:

numeric_dataset = tf.data.Dataset.from_tensor_slices((numeric_features, target))

for row in numeric_dataset.take(3):
  print(row)
(<tf.Tensor: shape=(5,), dtype=float64, numpy=array([ 63. , 150. , 145. , 233. ,   2.3])>, <tf.Tensor: shape=(), dtype=int64, numpy=0>)
(<tf.Tensor: shape=(5,), dtype=float64, numpy=array([ 67. , 108. , 160. , 286. ,   1.5])>, <tf.Tensor: shape=(), dtype=int64, numpy=1>)
(<tf.Tensor: shape=(5,), dtype=float64, numpy=array([ 67. , 129. , 120. , 229. ,   2.6])>, <tf.Tensor: shape=(), dtype=int64, numpy=0>)
numeric_batches = numeric_dataset.shuffle(1000).batch(BATCH_SIZE)

model = get_basic_model()
model.fit(numeric_batches, epochs=15)
Epoch 1/15
152/152 [==============================] - 1s 2ms/step - loss: 0.7677 - accuracy: 0.6865
Epoch 2/15
152/152 [==============================] - 0s 2ms/step - loss: 0.6319 - accuracy: 0.7591
Epoch 3/15
152/152 [==============================] - 0s 2ms/step - loss: 0.5717 - accuracy: 0.7459
Epoch 4/15
152/152 [==============================] - 0s 2ms/step - loss: 0.5228 - accuracy: 0.7558
Epoch 5/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4820 - accuracy: 0.7624
Epoch 6/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4584 - accuracy: 0.7657
Epoch 7/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4454 - accuracy: 0.7657
Epoch 8/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4379 - accuracy: 0.7789
Epoch 9/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4324 - accuracy: 0.7789
Epoch 10/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4282 - accuracy: 0.7756
Epoch 11/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4273 - accuracy: 0.7789
Epoch 12/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4268 - accuracy: 0.7756
Epoch 13/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4248 - accuracy: 0.7789
Epoch 14/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4235 - accuracy: 0.7855
Epoch 15/15
152/152 [==============================] - 0s 2ms/step - loss: 0.4223 - accuracy: 0.7888
<keras.callbacks.History at 0x7f1ddc406510>

DataFrame sebagai kamus

Saat Anda mulai berurusan dengan data heterogen, tidak mungkin lagi memperlakukan DataFrame seolah-olah itu adalah larik tunggal. Tensor TensorFlow mengharuskan semua elemen memiliki dtype yang sama.

Jadi, dalam hal ini, Anda harus mulai memperlakukannya sebagai kamus kolom, di mana setiap kolom memiliki tipe d yang seragam. DataFrame sangat mirip dengan kamus array, jadi biasanya yang perlu Anda lakukan hanyalah melemparkan DataFrame ke dict Python. Banyak API TensorFlow penting yang mendukung kamus array (bersarang) sebagai input.

pipa input tf.data menangani ini dengan cukup baik. Semua operasi tf.data menangani kamus dan tupel secara otomatis. Jadi, untuk membuat kumpulan data contoh kamus dari DataFrame, cukup masukkan ke dict sebelum memotongnya dengan Dataset.from_tensor_slices :

numeric_dict_ds = tf.data.Dataset.from_tensor_slices((dict(numeric_features), target))

Berikut adalah tiga contoh pertama dari kumpulan data tersebut:

for row in numeric_dict_ds.take(3):
  print(row)
({'age': <tf.Tensor: shape=(), dtype=int64, numpy=63>, 'thalach': <tf.Tensor: shape=(), dtype=int64, numpy=150>, 'trestbps': <tf.Tensor: shape=(), dtype=int64, numpy=145>, 'chol': <tf.Tensor: shape=(), dtype=int64, numpy=233>, 'oldpeak': <tf.Tensor: shape=(), dtype=float64, numpy=2.3>}, <tf.Tensor: shape=(), dtype=int64, numpy=0>)
({'age': <tf.Tensor: shape=(), dtype=int64, numpy=67>, 'thalach': <tf.Tensor: shape=(), dtype=int64, numpy=108>, 'trestbps': <tf.Tensor: shape=(), dtype=int64, numpy=160>, 'chol': <tf.Tensor: shape=(), dtype=int64, numpy=286>, 'oldpeak': <tf.Tensor: shape=(), dtype=float64, numpy=1.5>}, <tf.Tensor: shape=(), dtype=int64, numpy=1>)
({'age': <tf.Tensor: shape=(), dtype=int64, numpy=67>, 'thalach': <tf.Tensor: shape=(), dtype=int64, numpy=129>, 'trestbps': <tf.Tensor: shape=(), dtype=int64, numpy=120>, 'chol': <tf.Tensor: shape=(), dtype=int64, numpy=229>, 'oldpeak': <tf.Tensor: shape=(), dtype=float64, numpy=2.6>}, <tf.Tensor: shape=(), dtype=int64, numpy=0>)

Kamus dengan Keras

Biasanya, model dan lapisan Keras mengharapkan tensor input tunggal, tetapi kelas ini dapat menerima dan mengembalikan struktur kamus, tupel, dan tensor bersarang. Struktur ini dikenal sebagai "sarang" (lihat modul tf.nest untuk detailnya).

Ada dua cara yang setara Anda dapat menulis model keras yang menerima kamus sebagai input.

1. Gaya Model-subclass

Anda menulis subkelas tf.keras.Model (atau tf.keras.Layer ). Anda langsung menangani input, dan membuat output:

def stack_dict(inputs, fun=tf.stack):
    values = []
    for key in sorted(inputs.keys()):
      values.append(tf.cast(inputs[key], tf.float32))

    return fun(values, axis=-1)

Model ini dapat menerima kamus kolom atau kumpulan data elemen kamus untuk pelatihan:

model.fit(dict(numeric_features), target, epochs=5, batch_size=BATCH_SIZE)
Epoch 1/5
152/152 [==============================] - 3s 17ms/step - loss: 0.6736 - accuracy: 0.7063
Epoch 2/5
152/152 [==============================] - 3s 17ms/step - loss: 0.5577 - accuracy: 0.7294
Epoch 3/5
152/152 [==============================] - 2s 16ms/step - loss: 0.4869 - accuracy: 0.7591
Epoch 4/5
152/152 [==============================] - 2s 16ms/step - loss: 0.4525 - accuracy: 0.7690
Epoch 5/5
152/152 [==============================] - 2s 16ms/step - loss: 0.4403 - accuracy: 0.7624
<keras.callbacks.History at 0x7f1de4fa9390>
numeric_dict_batches = numeric_dict_ds.shuffle(SHUFFLE_BUFFER).batch(BATCH_SIZE)
model.fit(numeric_dict_batches, epochs=5)
Epoch 1/5
152/152 [==============================] - 2s 15ms/step - loss: 0.4328 - accuracy: 0.7756
Epoch 2/5
152/152 [==============================] - 2s 14ms/step - loss: 0.4297 - accuracy: 0.7888
Epoch 3/5
152/152 [==============================] - 2s 15ms/step - loss: 0.4270 - accuracy: 0.7888
Epoch 4/5
152/152 [==============================] - 2s 15ms/step - loss: 0.4245 - accuracy: 0.8020
Epoch 5/5
152/152 [==============================] - 2s 15ms/step - loss: 0.4240 - accuracy: 0.7921
<keras.callbacks.History at 0x7f1ddc0dba90>

Berikut adalah prediksi untuk tiga contoh pertama:

model.predict(dict(numeric_features.iloc[:3]))
array([[[0.00565109]],

       [[0.60601974]],

       [[0.03647463]]], dtype=float32)

2. Gaya fungsional Keras

inputs = {}
for name, column in numeric_features.items():
  inputs[name] = tf.keras.Input(
      shape=(1,), name=name, dtype=tf.float32)

inputs
{'age': <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'age')>,
 'thalach': <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'thalach')>,
 'trestbps': <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'trestbps')>,
 'chol': <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'chol')>,
 'oldpeak': <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'oldpeak')>}
x = stack_dict(inputs, fun=tf.concat)

normalizer = tf.keras.layers.Normalization(axis=-1)
normalizer.adapt(stack_dict(dict(numeric_features)))

x = normalizer(x)
x = tf.keras.layers.Dense(10, activation='relu')(x)
x = tf.keras.layers.Dense(10, activation='relu')(x)
x = tf.keras.layers.Dense(1)(x)

model = tf.keras.Model(inputs, x)

model.compile(optimizer='adam',
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'],
              run_eagerly=True)
tf.keras.utils.plot_model(model, rankdir="LR", show_shapes=True)

png

Anda dapat melatih model fungsional dengan cara yang sama seperti subkelas model:

model.fit(dict(numeric_features), target, epochs=5, batch_size=BATCH_SIZE)
Epoch 1/5
152/152 [==============================] - 2s 15ms/step - loss: 0.6529 - accuracy: 0.7492
Epoch 2/5
152/152 [==============================] - 2s 15ms/step - loss: 0.5448 - accuracy: 0.7624
Epoch 3/5
152/152 [==============================] - 2s 15ms/step - loss: 0.4935 - accuracy: 0.7756
Epoch 4/5
152/152 [==============================] - 2s 15ms/step - loss: 0.4650 - accuracy: 0.7789
Epoch 5/5
152/152 [==============================] - 2s 15ms/step - loss: 0.4486 - accuracy: 0.7855
<keras.callbacks.History at 0x7f1ddc0d0f90>
numeric_dict_batches = numeric_dict_ds.shuffle(SHUFFLE_BUFFER).batch(BATCH_SIZE)
model.fit(numeric_dict_batches, epochs=5)
Epoch 1/5
152/152 [==============================] - 2s 15ms/step - loss: 0.4398 - accuracy: 0.7855
Epoch 2/5
152/152 [==============================] - 2s 15ms/step - loss: 0.4330 - accuracy: 0.7855
Epoch 3/5
152/152 [==============================] - 2s 16ms/step - loss: 0.4294 - accuracy: 0.7921
Epoch 4/5
152/152 [==============================] - 2s 16ms/step - loss: 0.4271 - accuracy: 0.7888
Epoch 5/5
152/152 [==============================] - 2s 16ms/step - loss: 0.4231 - accuracy: 0.7855
<keras.callbacks.History at 0x7f1d7c5d5d10>

Contoh lengkap

Jika Anda meneruskan DataFrame yang heterogen ke Keras, setiap kolom mungkin memerlukan pemrosesan awal yang unik. Anda dapat melakukan prapemrosesan ini secara langsung di DataFrame, tetapi agar model berfungsi dengan benar, input harus selalu diproses sebelumnya dengan cara yang sama. Jadi, pendekatan terbaik adalah membangun preprocessing ke dalam model. Lapisan pra -pemrosesan keras mencakup banyak tugas umum.

Bangun kepala pra-pemrosesan

Dalam kumpulan data ini beberapa fitur "bilangan bulat" dalam data mentah sebenarnya adalah indeks Kategoris. Indeks ini bukan nilai numerik yang benar-benar berurutan (lihat deskripsi kumpulan data untuk detailnya). Karena ini tidak berurutan, mereka tidak pantas untuk dimasukkan langsung ke model; model akan menafsirkannya sebagai yang dipesan. Untuk menggunakan input ini, Anda harus menyandikannya, baik sebagai vektor one-hot atau vektor embedding. Hal yang sama berlaku untuk fitur kategoris string.

Fitur biner di sisi lain umumnya tidak perlu dikodekan atau dinormalisasi.

Mulailah dengan membuat daftar fitur yang termasuk dalam setiap grup:

binary_feature_names = ['sex', 'fbs', 'exang']
categorical_feature_names = ['cp', 'restecg', 'slope', 'thal', 'ca']

Langkah selanjutnya adalah membangun model preprocessing yang akan menerapkan preprocessing yang sesuai untuk masing-masing input dan menggabungkan hasilnya.

Bagian ini menggunakan Keras Functional API untuk mengimplementasikan preprocessing. Anda mulai dengan membuat satu tf.keras.Input untuk setiap kolom kerangka data:

inputs = {}
for name, column in df.items():
  if type(column[0]) == str:
    dtype = tf.string
  elif (name in categorical_feature_names or
        name in binary_feature_names):
    dtype = tf.int64
  else:
    dtype = tf.float32

  inputs[name] = tf.keras.Input(shape=(), name=name, dtype=dtype)
inputs
{'age': <KerasTensor: shape=(None,) dtype=float32 (created by layer 'age')>,
 'sex': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'sex')>,
 'cp': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'cp')>,
 'trestbps': <KerasTensor: shape=(None,) dtype=float32 (created by layer 'trestbps')>,
 'chol': <KerasTensor: shape=(None,) dtype=float32 (created by layer 'chol')>,
 'fbs': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'fbs')>,
 'restecg': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'restecg')>,
 'thalach': <KerasTensor: shape=(None,) dtype=float32 (created by layer 'thalach')>,
 'exang': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'exang')>,
 'oldpeak': <KerasTensor: shape=(None,) dtype=float32 (created by layer 'oldpeak')>,
 'slope': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'slope')>,
 'ca': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'ca')>,
 'thal': <KerasTensor: shape=(None,) dtype=string (created by layer 'thal')>}

Untuk setiap input, Anda akan menerapkan beberapa transformasi menggunakan lapisan Keras dan operasi TensorFlow. Setiap fitur dimulai sebagai sekumpulan skalar ( shape=(batch,) ). Output untuk masing-masing harus berupa kumpulan vektor tf.float32 ( shape=(batch, n) ). Langkah terakhir akan menggabungkan semua vektor itu bersama-sama.

Input biner

Karena input biner tidak memerlukan prapemrosesan, cukup tambahkan sumbu vektor, masukkan ke float32 dan tambahkan ke daftar input praproses:

preprocessed = []

for name in binary_feature_names:
  inp = inputs[name]
  inp = inp[:, tf.newaxis]
  float_value = tf.cast(inp, tf.float32)
  preprocessed.append(float_value)

preprocessed
[<KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'tf.cast_5')>,
 <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'tf.cast_6')>,
 <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'tf.cast_7')>]

Masukan numerik

Seperti di bagian sebelumnya, Anda harus menjalankan input numerik ini melalui lapisan tf.keras.layers.Normalization sebelum menggunakannya. Bedanya, kali ini inputnya berupa dict. Kode di bawah ini mengumpulkan fitur numerik dari DataFrame, menumpuknya bersama-sama dan meneruskannya ke metode Normalization.adapt .

normalizer = tf.keras.layers.Normalization(axis=-1)
normalizer.adapt(stack_dict(dict(numeric_features)))

Kode di bawah ini menumpuk fitur numerik dan menjalankannya melalui lapisan normalisasi.

numeric_inputs = {}
for name in numeric_feature_names:
  numeric_inputs[name]=inputs[name]

numeric_inputs = stack_dict(numeric_inputs)
numeric_normalized = normalizer(numeric_inputs)

preprocessed.append(numeric_normalized)

preprocessed
[<KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'tf.cast_5')>,
 <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'tf.cast_6')>,
 <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'tf.cast_7')>,
 <KerasTensor: shape=(None, 5) dtype=float32 (created by layer 'normalization_3')>]

Fitur kategoris

Untuk menggunakan fitur kategoris, Anda harus terlebih dahulu mengkodekannya ke dalam vektor biner atau embeddings. Karena fitur ini hanya berisi sejumlah kecil kategori, konversikan input langsung ke vektor one-hot menggunakan opsi output_mode='one_hot' , yang didukung oleh lapisan tf.keras.layers.StringLookup dan tf.keras.layers.IntegerLookup .

Berikut adalah contoh bagaimana lapisan ini bekerja:

vocab = ['a','b','c']
lookup = tf.keras.layers.StringLookup(vocabulary=vocab, output_mode='one_hot')
lookup(['c','a','a','b','zzz'])
<tf.Tensor: shape=(5, 4), dtype=float32, numpy=
array([[0., 0., 0., 1.],
       [0., 1., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [1., 0., 0., 0.]], dtype=float32)>
vocab = [1,4,7,99]
lookup = tf.keras.layers.IntegerLookup(vocabulary=vocab, output_mode='one_hot')

lookup([-1,4,1])
<tf.Tensor: shape=(3, 5), dtype=float32, numpy=
array([[1., 0., 0., 0., 0.],
       [0., 0., 1., 0., 0.],
       [0., 1., 0., 0., 0.]], dtype=float32)>

Untuk menentukan kosakata untuk setiap input, buat layer untuk mengonversi kosakata tersebut menjadi vektor one-hot:

for name in categorical_feature_names:
  vocab = sorted(set(df[name]))
  print(f'name: {name}')
  print(f'vocab: {vocab}\n')

  if type(vocab[0]) is str:
    lookup = tf.keras.layers.StringLookup(vocabulary=vocab, output_mode='one_hot')
  else:
    lookup = tf.keras.layers.IntegerLookup(vocabulary=vocab, output_mode='one_hot')

  x = inputs[name][:, tf.newaxis]
  x = lookup(x)
  preprocessed.append(x)
name: cp
vocab: [0, 1, 2, 3, 4]

name: restecg
vocab: [0, 1, 2]

name: slope
vocab: [1, 2, 3]

name: thal
vocab: ['1', '2', 'fixed', 'normal', 'reversible']

name: ca
vocab: [0, 1, 2, 3]

Pasang kepala preprocessing

Pada titik ini preprocessed hanyalah daftar Python dari semua hasil preprocessing, setiap hasil memiliki bentuk (batch_size, depth) :

preprocessed
[<KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'tf.cast_5')>,
 <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'tf.cast_6')>,
 <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'tf.cast_7')>,
 <KerasTensor: shape=(None, 5) dtype=float32 (created by layer 'normalization_3')>,
 <KerasTensor: shape=(None, 6) dtype=float32 (created by layer 'integer_lookup_1')>,
 <KerasTensor: shape=(None, 4) dtype=float32 (created by layer 'integer_lookup_2')>,
 <KerasTensor: shape=(None, 4) dtype=float32 (created by layer 'integer_lookup_3')>,
 <KerasTensor: shape=(None, 6) dtype=float32 (created by layer 'string_lookup_1')>,
 <KerasTensor: shape=(None, 5) dtype=float32 (created by layer 'integer_lookup_4')>]

Gabungkan semua fitur yang telah diproses sebelumnya di sepanjang sumbu depth , sehingga setiap contoh kamus diubah menjadi satu vektor. Vektor berisi fitur kategoris, fitur numerik, dan fitur one-hot kategoris:

preprocesssed_result = tf.concat(preprocessed, axis=-1)
preprocesssed_result
<KerasTensor: shape=(None, 33) dtype=float32 (created by layer 'tf.concat_1')>

Sekarang buat model dari perhitungan itu sehingga dapat digunakan kembali:

preprocessor = tf.keras.Model(inputs, preprocesssed_result)
tf.keras.utils.plot_model(preprocessor, rankdir="LR", show_shapes=True)

png

Untuk menguji praprosesor, gunakan pengakses DataFrame.iloc untuk mengiris contoh pertama dari DataFrame. Kemudian konversikan ke kamus dan berikan kamus ke praprosesor. Hasilnya adalah vektor tunggal yang berisi fitur biner, fitur numerik yang dinormalisasi, dan fitur kategoris satu-panas, dalam urutan itu:

preprocessor(dict(df.iloc[:1]))
<tf.Tensor: shape=(1, 33), dtype=float32, numpy=
array([[ 1.        ,  1.        ,  0.        ,  0.93383914, -0.26008663,
         1.0680453 ,  0.03480718,  0.74578077,  0.        ,  0.        ,

         1.        ,  0.        ,  0.        ,  0.        ,  0.        ,
         0.        ,  0.        ,  1.        ,  0.        ,  0.        ,
         0.        ,  1.        ,  0.        ,  0.        ,  0.        ,
         1.        ,  0.        ,  0.        ,  0.        ,  1.        ,
         0.        ,  0.        ,  0.        ]], dtype=float32)>

Buat dan latih model

Sekarang bangun tubuh utama model. Gunakan konfigurasi yang sama seperti pada contoh sebelumnya: Sepasang lapisan linier-lurus yang diratakan dan lapisan keluaran Dense Dense(1) untuk klasifikasi.

body = tf.keras.Sequential([
  tf.keras.layers.Dense(10, activation='relu'),
  tf.keras.layers.Dense(10, activation='relu'),
  tf.keras.layers.Dense(1)
])

Sekarang satukan kedua bagian tersebut menggunakan API fungsional Keras.

inputs
{'age': <KerasTensor: shape=(None,) dtype=float32 (created by layer 'age')>,
 'sex': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'sex')>,
 'cp': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'cp')>,
 'trestbps': <KerasTensor: shape=(None,) dtype=float32 (created by layer 'trestbps')>,
 'chol': <KerasTensor: shape=(None,) dtype=float32 (created by layer 'chol')>,
 'fbs': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'fbs')>,
 'restecg': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'restecg')>,
 'thalach': <KerasTensor: shape=(None,) dtype=float32 (created by layer 'thalach')>,
 'exang': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'exang')>,
 'oldpeak': <KerasTensor: shape=(None,) dtype=float32 (created by layer 'oldpeak')>,
 'slope': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'slope')>,
 'ca': <KerasTensor: shape=(None,) dtype=int64 (created by layer 'ca')>,
 'thal': <KerasTensor: shape=(None,) dtype=string (created by layer 'thal')>}
x = preprocessor(inputs)
x
<KerasTensor: shape=(None, 33) dtype=float32 (created by layer 'model_1')>
result = body(x)
result
<KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'sequential_3')>
model = tf.keras.Model(inputs, result)

model.compile(optimizer='adam',
                loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
                metrics=['accuracy'])

Model ini mengharapkan kamus input. Cara paling sederhana untuk meneruskan datanya adalah dengan mengonversi DataFrame menjadi dict dan meneruskan dict itu sebagai argumen x ke Model.fit :

history = model.fit(dict(df), target, epochs=5, batch_size=BATCH_SIZE)
Epoch 1/5
152/152 [==============================] - 1s 4ms/step - loss: 0.6911 - accuracy: 0.6997
Epoch 2/5
152/152 [==============================] - 1s 4ms/step - loss: 0.5073 - accuracy: 0.7393
Epoch 3/5
152/152 [==============================] - 1s 4ms/step - loss: 0.4129 - accuracy: 0.7888
Epoch 4/5
152/152 [==============================] - 1s 4ms/step - loss: 0.3663 - accuracy: 0.7921
Epoch 5/5
152/152 [==============================] - 1s 4ms/step - loss: 0.3363 - accuracy: 0.8152

Menggunakan tf.data juga berfungsi:

ds = tf.data.Dataset.from_tensor_slices((
    dict(df),
    target
))

ds = ds.batch(BATCH_SIZE)
import pprint

for x, y in ds.take(1):
  pprint.pprint(x)
  print()
  print(y)
{'age': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([63, 67])>,
 'ca': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([0, 3])>,
 'chol': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([233, 286])>,
 'cp': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([1, 4])>,
 'exang': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([0, 1])>,
 'fbs': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([1, 0])>,
 'oldpeak': <tf.Tensor: shape=(2,), dtype=float64, numpy=array([2.3, 1.5])>,
 'restecg': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([2, 2])>,
 'sex': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([1, 1])>,
 'slope': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([3, 2])>,
 'thal': <tf.Tensor: shape=(2,), dtype=string, numpy=array([b'fixed', b'normal'], dtype=object)>,
 'thalach': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([150, 108])>,
 'trestbps': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([145, 160])>}

tf.Tensor([0 1], shape=(2,), dtype=int64)
history = model.fit(ds, epochs=5)
Epoch 1/5
152/152 [==============================] - 1s 5ms/step - loss: 0.3150 - accuracy: 0.8284
Epoch 2/5
152/152 [==============================] - 1s 5ms/step - loss: 0.2989 - accuracy: 0.8449
Epoch 3/5
152/152 [==============================] - 1s 5ms/step - loss: 0.2870 - accuracy: 0.8449
Epoch 4/5
152/152 [==============================] - 1s 5ms/step - loss: 0.2782 - accuracy: 0.8482
Epoch 5/5
152/152 [==============================] - 1s 5ms/step - loss: 0.2712 - accuracy: 0.8482