TensorFlow.org पर देखें | Google Colab में चलाएं | GitHub पर स्रोत देखें | नोटबुक डाउनलोड करें |
यह ट्यूटोरियल NumPy सरणियों से tf.data.Dataset
में डेटा लोड करने का एक उदाहरण प्रदान करता है।
यह उदाहरण MNIST डेटासेट को .npz
फ़ाइल से लोड करता है। हालाँकि, NumPy सरणियों का स्रोत महत्वपूर्ण नहीं है।
सेट अप
import numpy as np
import tensorflow as tf
.npz
फ़ाइल से लोड करें
DATA_URL = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz'
path = tf.keras.utils.get_file('mnist.npz', DATA_URL)
with np.load(path) as data:
train_examples = data['x_train']
train_labels = data['y_train']
test_examples = data['x_test']
test_labels = data['y_test']
NumPy सरणियों को tf.data.Dataset
के साथ लोड करें
मान लें कि आपके पास उदाहरणों की एक सरणी और लेबल की एक संगत सरणी है, तो दो सरणियों को tf.data.Dataset
में tf.data.Dataset.from_tensor_slices
बनाने के लिए टपल के रूप में पास करें।
train_dataset = tf.data.Dataset.from_tensor_slices((train_examples, train_labels))
test_dataset = tf.data.Dataset.from_tensor_slices((test_examples, test_labels))
डेटासेट का उपयोग करें
डेटासेट को शफ़ल और बैच करें
BATCH_SIZE = 64
SHUFFLE_BUFFER_SIZE = 100
train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)
test_dataset = test_dataset.batch(BATCH_SIZE)
एक मॉडल बनाएं और प्रशिक्षित करें
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(optimizer=tf.keras.optimizers.RMSprop(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['sparse_categorical_accuracy'])
model.fit(train_dataset, epochs=10)
Epoch 1/10 938/938 [==============================] - 3s 2ms/step - loss: 3.5318 - sparse_categorical_accuracy: 0.8762 Epoch 2/10 938/938 [==============================] - 2s 2ms/step - loss: 0.5408 - sparse_categorical_accuracy: 0.9289 Epoch 3/10 938/938 [==============================] - 2s 2ms/step - loss: 0.3770 - sparse_categorical_accuracy: 0.9473 Epoch 4/10 938/938 [==============================] - 2s 2ms/step - loss: 0.3281 - sparse_categorical_accuracy: 0.9566 Epoch 5/10 938/938 [==============================] - 2s 2ms/step - loss: 0.2940 - sparse_categorical_accuracy: 0.9621 Epoch 6/10 938/938 [==============================] - 2s 2ms/step - loss: 0.2622 - sparse_categorical_accuracy: 0.9657 Epoch 7/10 938/938 [==============================] - 2s 2ms/step - loss: 0.2446 - sparse_categorical_accuracy: 0.9698 Epoch 8/10 938/938 [==============================] - 2s 2ms/step - loss: 0.2147 - sparse_categorical_accuracy: 0.9739 Epoch 9/10 938/938 [==============================] - 2s 2ms/step - loss: 0.1956 - sparse_categorical_accuracy: 0.9750 Epoch 10/10 938/938 [==============================] - 2s 2ms/step - loss: 0.1964 - sparse_categorical_accuracy: 0.9759 <keras.callbacks.History at 0x7fc7a80beb50>
model.evaluate(test_dataset)
157/157 [==============================] - 0s 2ms/step - loss: 0.7089 - sparse_categorical_accuracy: 0.9572 [0.7088937163352966, 0.9571999907493591]