TensorFlow.org'da görüntüleyin | Google Colab'da çalıştırın | Kaynağı GitHub'da görüntüleyin | Not defterini indir |
genel bakış
TensorFlow Tahmincileri, TensorFlow'da desteklenir ve yeni ve mevcut tf.keras
modellerinden oluşturulabilir. Bu öğretici, bu sürecin eksiksiz, minimal bir örneğini içerir.
Kurmak
import tensorflow as tf
import numpy as np
import tensorflow_datasets as tfds
Basit bir Keras modeli oluşturun.
Keras'ta modeller oluşturmak için katmanları birleştirirsiniz. Bir model (genellikle) bir katman grafiğidir. En yaygın model türü bir katman yığınıdır: tf.keras.Sequential
modeli.
Basit, tam bağlantılı bir ağ (yani çok katmanlı algılayıcı) oluşturmak için:
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(16, activation='relu', input_shape=(4,)),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(3)
])
Modeli derleyin ve bir özet alın.
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer='adam')
model.summary()
tutucu3 l10n-yerModel: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 16) 80 dropout (Dropout) (None, 16) 0 dense_1 (Dense) (None, 3) 51 ================================================================= Total params: 131 Trainable params: 131 Non-trainable params: 0 _________________________________________________________________
Bir giriş işlevi oluşturun
Büyük veri kümelerine veya çok cihazlı eğitime ölçeklendirmek için Veri Kümeleri API'sini kullanın.
Tahminciler, girdi işlem hatlarının ne zaman ve nasıl oluşturulduğunu kontrol etmelidir. Buna izin vermek için bir "Giriş işlevi" veya input_fn
. Estimator
bu işlevi argüman olmadan çağırır. input_fn
, bir tf.data.Dataset
döndürmelidir.
def input_fn():
split = tfds.Split.TRAIN
dataset = tfds.load('iris', split=split, as_supervised=True)
dataset = dataset.map(lambda features, labels: ({'dense_input':features}, labels))
dataset = dataset.batch(32).repeat()
return dataset
input_fn
test edin
for features_batch, labels_batch in input_fn().take(1):
print(features_batch)
print(labels_batch)
tutucu6 l10n-yer{'dense_input': <tf.Tensor: shape=(32, 4), dtype=float32, numpy= array([[5.1, 3.4, 1.5, 0.2], [7.7, 3. , 6.1, 2.3], [5.7, 2.8, 4.5, 1.3], [6.8, 3.2, 5.9, 2.3], [5.2, 3.4, 1.4, 0.2], [5.6, 2.9, 3.6, 1.3], [5.5, 2.6, 4.4, 1.2], [5.5, 2.4, 3.7, 1. ], [4.6, 3.4, 1.4, 0.3], [7.7, 2.8, 6.7, 2. ], [7. , 3.2, 4.7, 1.4], [4.6, 3.2, 1.4, 0.2], [6.5, 3. , 5.2, 2. ], [5.5, 4.2, 1.4, 0.2], [5.4, 3.9, 1.3, 0.4], [5. , 3.5, 1.3, 0.3], [5.1, 3.8, 1.5, 0.3], [4.8, 3. , 1.4, 0.1], [6.5, 3. , 5.8, 2.2], [7.6, 3. , 6.6, 2.1], [6.7, 3.3, 5.7, 2.1], [7.9, 3.8, 6.4, 2. ], [6.7, 3. , 5.2, 2.3], [5.8, 4. , 1.2, 0.2], [6.3, 2.5, 5. , 1.9], [5. , 3. , 1.6, 0.2], [6.9, 3.1, 5.1, 2.3], [6.1, 3. , 4.6, 1.4], [5.8, 2.7, 4.1, 1. ], [5.2, 2.7, 3.9, 1.4], [6.7, 3. , 5. , 1.7], [5.7, 2.6, 3.5, 1. ]], dtype=float32)>} tf.Tensor([0 2 1 2 0 1 1 1 0 2 1 0 2 0 0 0 0 0 2 2 2 2 2 0 2 0 2 1 1 1 1 1], shape=(32,), dtype=int64)
tf.keras modelinden bir Tahminci oluşturun.
Bir tf.keras.Model
, modeli tf.keras.estimator.model_to_estimator ile bir tf.estimator.Estimator
nesnesine dönüştürerek tf.estimator
API ile tf.keras.estimator.model_to_estimator
.
import tempfile
model_dir = tempfile.mkdtemp()
keras_estimator = tf.keras.estimator.model_to_estimator(
keras_model=model, model_dir=model_dir)
tutucu8 l10n-yerINFO:tensorflow:Using default config. INFO:tensorflow:Using default config. INFO:tensorflow:Using the Keras model provided. INFO:tensorflow:Using the Keras model provided. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/backend.py:450: UserWarning: `tf.keras.backend.set_learning_phase` is deprecated and will be removed after 2020-10-11. To update it, simply pass a True/False value to the `training` argument of the `__call__` method of your layer or model. warnings.warn('`tf.keras.backend.set_learning_phase` is deprecated and ' INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp2jzrjbqb', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp2jzrjbqb', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
Tahminciyi eğitin ve değerlendirin.
keras_estimator.train(input_fn=input_fn, steps=500)
eval_result = keras_estimator.evaluate(input_fn=input_fn, steps=10)
print('Eval result: {}'.format(eval_result))
tutucu10 l10n-yerWARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Warm-starting with WarmStartSettings: WarmStartSettings(ckpt_to_initialize_from='/tmp/tmp2jzrjbqb/keras/keras_model.ckpt', vars_to_warm_start='.*', var_name_to_vocab_info={}, var_name_to_prev_var_name={}) INFO:tensorflow:Warm-starting with WarmStartSettings: WarmStartSettings(ckpt_to_initialize_from='/tmp/tmp2jzrjbqb/keras/keras_model.ckpt', vars_to_warm_start='.*', var_name_to_vocab_info={}, var_name_to_prev_var_name={}) INFO:tensorflow:Warm-starting from: /tmp/tmp2jzrjbqb/keras/keras_model.ckpt INFO:tensorflow:Warm-starting from: /tmp/tmp2jzrjbqb/keras/keras_model.ckpt INFO:tensorflow:Warm-starting variables only in TRAINABLE_VARIABLES. INFO:tensorflow:Warm-starting variables only in TRAINABLE_VARIABLES. INFO:tensorflow:Warm-started 4 variables. INFO:tensorflow:Warm-started 4 variables. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp2jzrjbqb/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp2jzrjbqb/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 3.2731433, step = 0 INFO:tensorflow:loss = 3.2731433, step = 0 INFO:tensorflow:global_step/sec: 19.6463 INFO:tensorflow:global_step/sec: 19.6463 INFO:tensorflow:loss = 1.012466, step = 100 (5.092 sec) INFO:tensorflow:loss = 1.012466, step = 100 (5.092 sec) INFO:tensorflow:global_step/sec: 19.705 INFO:tensorflow:global_step/sec: 19.705 INFO:tensorflow:loss = 0.9225232, step = 200 (5.075 sec) INFO:tensorflow:loss = 0.9225232, step = 200 (5.075 sec) INFO:tensorflow:global_step/sec: 19.9236 INFO:tensorflow:global_step/sec: 19.9236 INFO:tensorflow:loss = 0.8686823, step = 300 (5.019 sec) INFO:tensorflow:loss = 0.8686823, step = 300 (5.019 sec) INFO:tensorflow:global_step/sec: 19.8862 INFO:tensorflow:global_step/sec: 19.8862 INFO:tensorflow:loss = 0.6412657, step = 400 (5.029 sec) INFO:tensorflow:loss = 0.6412657, step = 400 (5.029 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 500... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 500... INFO:tensorflow:Saving checkpoints for 500 into /tmp/tmp2jzrjbqb/model.ckpt. INFO:tensorflow:Saving checkpoints for 500 into /tmp/tmp2jzrjbqb/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 500... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 500... INFO:tensorflow:Loss for final step: 0.65391386. INFO:tensorflow:Loss for final step: 0.65391386. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/training_v1.py:2057: UserWarning: `Model.state_updates` will be removed in a future version. This property should not be used in TensorFlow 2.0, as `updates` are applied automatically. updates = self.state_updates INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-26T06:39:31 INFO:tensorflow:Starting evaluation at 2022-01-26T06:39:31 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmp2jzrjbqb/model.ckpt-500 INFO:tensorflow:Restoring parameters from /tmp/tmp2jzrjbqb/model.ckpt-500 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.63967s INFO:tensorflow:Inference Time : 0.63967s INFO:tensorflow:Finished evaluation at 2022-01-26-06:39:31 INFO:tensorflow:Finished evaluation at 2022-01-26-06:39:31 INFO:tensorflow:Saving dict for global step 500: global_step = 500, loss = 0.6503415 INFO:tensorflow:Saving dict for global step 500: global_step = 500, loss = 0.6503415 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 500: /tmp/tmp2jzrjbqb/model.ckpt-500 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 500: /tmp/tmp2jzrjbqb/model.ckpt-500 Eval result: {'loss': 0.6503415, 'global_step': 500}