Visualizza su TensorFlow.org | Esegui in Google Colab | Visualizza l'origine su GitHub | Scarica quaderno |
Panoramica
È comune salvare e caricare un modello durante l'addestramento. Esistono due set di API per il salvataggio e il caricamento di un modello keras: un'API di alto livello e un'API di basso livello. Questo tutorial mostra come utilizzare le API SavedModel quando usi tf.distribute.Strategy
. Per informazioni su SavedModel e sulla serializzazione in generale, leggi la guida al modello salvato e la guida alla serializzazione del modello Keras . Iniziamo con un semplice esempio:
Importa dipendenze:
import tensorflow_datasets as tfds
import tensorflow as tf
Preparare i dati e il modello utilizzando tf.distribute.Strategy
:
mirrored_strategy = tf.distribute.MirroredStrategy()
def get_data():
datasets, ds_info = tfds.load(name='mnist', with_info=True, as_supervised=True)
mnist_train, mnist_test = datasets['train'], datasets['test']
BUFFER_SIZE = 10000
BATCH_SIZE_PER_REPLICA = 64
BATCH_SIZE = BATCH_SIZE_PER_REPLICA * mirrored_strategy.num_replicas_in_sync
def scale(image, label):
image = tf.cast(image, tf.float32)
image /= 255
return image, label
train_dataset = mnist_train.map(scale).cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
eval_dataset = mnist_test.map(scale).batch(BATCH_SIZE)
return train_dataset, eval_dataset
def get_model():
with mirrored_strategy.scope():
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(),
metrics=[tf.metrics.SparseCategoricalAccuracy()])
return model
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
Allena il modello:
model = get_model()
train_dataset, eval_dataset = get_data()
model.fit(train_dataset, epochs=2)
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). Epoch 1/2 2022-01-26 05:41:11.916000: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:547] The `assert_cardinality` transformation is currently not handled by the auto-shard rewrite and will be removed. INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 938/938 [==============================] - 11s 5ms/step - loss: 0.1873 - sparse_categorical_accuracy: 0.9451 Epoch 2/2 938/938 [==============================] - 3s 3ms/step - loss: 0.0641 - sparse_categorical_accuracy: 0.9807 <keras.callbacks.History at 0x7f3b900396d0>
Salva e carica il modello
Ora che hai un modello semplice con cui lavorare, diamo un'occhiata alle API di salvataggio/caricamento. Sono disponibili due set di API:
- Keras di alto livello
model.save
etf.keras.models.load_model
-
tf.saved_model.save
etf.saved_model.load
di basso livello
Le API Keras
Ecco un esempio di salvataggio e caricamento di un modello con le API Keras:
keras_model_path = "/tmp/keras_save"
model.save(keras_model_path)
2022-01-26 05:41:26.593570: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: /tmp/keras_save/assets INFO:tensorflow:Assets written to: /tmp/keras_save/assets
Ripristina il modello senza tf.distribute.Strategy
:
restored_keras_model = tf.keras.models.load_model(keras_model_path)
restored_keras_model.fit(train_dataset, epochs=2)
Epoch 1/2 938/938 [==============================] - 3s 3ms/step - loss: 0.0476 - sparse_categorical_accuracy: 0.9859 Epoch 2/2 938/938 [==============================] - 3s 3ms/step - loss: 0.0334 - sparse_categorical_accuracy: 0.9895 <keras.callbacks.History at 0x7f3b187b7150>
Dopo aver ripristinato il modello, puoi continuare l'addestramento su di esso, anche senza dover chiamare nuovamente compile()
, poiché è già compilato prima del salvataggio. Il modello viene salvato nel formato proto standard SavedModel
di TensorFlow. Per ulteriori informazioni, fare riferimento alla guida al formato saved_model
.
Ora per caricare il modello e addestrarlo usando un tf.distribute.Strategy
:
another_strategy = tf.distribute.OneDeviceStrategy("/cpu:0")
with another_strategy.scope():
restored_keras_model_ds = tf.keras.models.load_model(keras_model_path)
restored_keras_model_ds.fit(train_dataset, epochs=2)
Epoch 1/2 2022-01-26 05:41:33.036733: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:547] The `assert_cardinality` transformation is currently not handled by the auto-shard rewrite and will be removed. 2022-01-26 05:41:33.083001: W tensorflow/core/framework/dataset.cc:768] Input of GeneratorDatasetOp::Dataset will not be optimized because the dataset does not implement the AsGraphDefInternal() method needed to apply optimizations. 938/938 [==============================] - 10s 10ms/step - loss: 0.0474 - sparse_categorical_accuracy: 0.9860 Epoch 2/2 938/938 [==============================] - 10s 10ms/step - loss: 0.0327 - sparse_categorical_accuracy: 0.9903
Come puoi vedere, il caricamento funziona come previsto con tf.distribute.Strategy
. La strategia utilizzata qui non deve essere la stessa strategia utilizzata prima del salvataggio.
Le API tf.saved_model
Ora diamo un'occhiata alle API di livello inferiore. Il salvataggio del modello è simile all'API keras:
model = get_model() # get a fresh model
saved_model_path = "/tmp/tf_save"
tf.saved_model.save(model, saved_model_path)
INFO:tensorflow:Assets written to: /tmp/tf_save/assets INFO:tensorflow:Assets written to: /tmp/tf_save/assets
Il caricamento può essere eseguito con tf.saved_model.load()
. Tuttavia, poiché si tratta di un'API di livello inferiore (e quindi ha una gamma più ampia di casi d'uso), non restituisce un modello Keras. Invece, restituisce un oggetto che contiene funzioni che possono essere utilizzate per eseguire inferenze. Per esempio:
DEFAULT_FUNCTION_KEY = "serving_default"
loaded = tf.saved_model.load(saved_model_path)
inference_func = loaded.signatures[DEFAULT_FUNCTION_KEY]
L'oggetto caricato può contenere più funzioni, ciascuna associata a una chiave. Il "serving_default"
è la chiave predefinita per la funzione di inferenza con un modello Keras salvato. Per fare un'inferenza con questa funzione:
predict_dataset = eval_dataset.map(lambda image, label: image)
for batch in predict_dataset.take(1):
print(inference_func(batch))
{'dense_3': <tf.Tensor: shape=(64, 10), dtype=float32, numpy= array([[-1.18789300e-01, -1.78404614e-01, 4.92432676e-02, -9.37875658e-02, 1.14302970e-01, -8.99422392e-02, 9.47709680e-02, -7.75382966e-02, 4.04430032e-02, 2.41404288e-02], [-2.35370561e-01, -3.39397341e-02, 2.73427293e-02, -1.08200148e-01, 5.10682352e-02, 1.36142194e-01, 9.28785652e-02, -5.35808355e-02, 2.56292164e-01, 1.05301209e-01], [-1.91031799e-01, -7.72745535e-02, -7.23153427e-02, -1.99329913e-01, -7.45072216e-02, 2.42738128e-02, 2.07733169e-01, -3.15396488e-03, 4.95976806e-02, 2.14848563e-01], [-9.82482210e-02, -6.13910556e-02, 1.00815810e-01, -1.87558904e-01, 1.14685424e-01, 1.53835595e-01, 1.85714245e-01, -8.74890238e-02, 1.07493028e-01, 1.57510787e-02], [-8.56257528e-02, 3.23683321e-02, -3.66768315e-02, -1.47201523e-01, -5.31517603e-02, 1.52744055e-02, 1.69184029e-01, -5.42814359e-02, 1.11524366e-01, 5.65215349e-02], [-1.50604844e-01, -7.87255913e-03, 1.26651973e-01, -1.24476865e-01, 6.94983900e-02, 4.27672639e-03, 1.86136231e-01, -4.54714149e-03, 9.12746191e-02, 6.12779632e-02], [-2.79157639e-01, -4.61089313e-02, 2.51544192e-02, -1.79003477e-01, 3.83432880e-02, 2.05054253e-01, -8.25636461e-03, -8.25546682e-03, 2.41342247e-01, 8.24805871e-02], [-1.42795354e-01, 6.54597580e-02, 2.05058958e-02, -1.28471941e-01, 1.10977650e-01, 4.51317504e-02, 2.44124904e-01, 1.90523565e-02, 3.11958641e-02, 6.49511665e-02], [-1.33037239e-01, -2.72594951e-02, 8.09026062e-02, -1.95883229e-01, 1.84634060e-01, 1.00822970e-01, 4.40884084e-02, -6.43826872e-02, 1.47807434e-01, -1.92791894e-02], [-1.43770471e-01, -2.53150351e-02, 4.18904647e-02, -1.02573663e-01, 6.15917407e-02, 7.95702711e-02, 9.27314460e-02, -4.31537181e-02, 4.59018350e-02, 1.02965936e-01], [-1.90395206e-01, 2.93233991e-03, 1.48900077e-02, -1.15877971e-01, 1.06598288e-02, 1.40121073e-01, 6.86443001e-02, -4.61921766e-02, 1.27470195e-01, 6.73005953e-02], [-2.60747373e-01, -1.45188004e-01, 7.10044056e-04, -1.04602516e-01, 5.00324890e-02, 2.96664417e-01, 8.57191086e-02, 6.65097907e-02, 1.31302923e-01, -1.84605196e-02], [-1.62942797e-01, -3.63466889e-02, -1.33987352e-01, -1.34576231e-01, -8.19503814e-02, 1.30840242e-02, 6.16783127e-02, -3.64837795e-02, 3.18005830e-02, 1.98420882e-01], [-1.25772715e-01, -6.94367215e-02, -1.35144517e-02, -6.30265176e-02, 8.36028308e-02, 2.96559408e-02, 2.19864860e-01, -7.08417147e-02, 4.76131588e-02, 1.15781695e-01], [-1.55139655e-01, -1.27863720e-01, 9.67459157e-02, -1.48635745e-01, 1.25129193e-01, 4.04443927e-02, 2.94884086e-01, -7.66484886e-02, 1.18753463e-01, 2.93397382e-02], [-1.59221828e-01, -9.30457860e-02, 9.18259323e-02, -1.72857821e-01, 8.09611157e-02, 1.11391053e-01, 1.66679412e-01, 3.52456123e-02, 9.05358568e-02, 9.89414975e-02], [-2.01425552e-01, -4.67008501e-02, -1.62331611e-02, -9.73629057e-02, 1.36456266e-01, 1.30628154e-01, 1.53577864e-01, -6.73157908e-03, 9.31103677e-02, 1.50734074e-02], [-1.29348308e-01, -3.03804129e-03, 2.82487050e-02, -2.02886015e-01, 7.09105879e-02, 1.74542382e-01, 2.57992335e-02, -1.63579211e-02, 2.30892301e-02, 6.69767857e-02], [-1.56857669e-01, 5.46110943e-02, -5.93251809e-02, -1.04585059e-01, 2.61763521e-02, 1.43062070e-01, 1.57771498e-01, -6.19823262e-02, 3.59585434e-02, 6.62322640e-02], [-8.64257440e-02, -1.33483298e-03, 7.46414512e-02, -1.82848468e-01, 1.21074423e-01, 1.55276239e-01, 1.46483868e-01, -6.22515939e-03, 1.91641584e-01, -9.95825827e-02], [-2.52117336e-01, -6.92471862e-02, 1.09911412e-01, -3.73112522e-02, 3.76211852e-03, 5.23591004e-02, 9.16506499e-02, 6.80204183e-02, -4.27842364e-02, 7.91264027e-02], [-2.11018056e-01, 5.97522780e-03, 8.47486481e-02, -7.27925971e-02, 9.36664082e-03, 1.62506998e-01, 5.32426499e-02, 1.78599171e-02, -2.30420940e-02, 4.07365486e-02], [-1.35342121e-01, -4.06659022e-02, -2.09493563e-02, -1.64699793e-01, 8.35808069e-02, 7.68100768e-02, -7.14773983e-02, -3.43702435e-02, 9.47649628e-02, 9.36352089e-02], [-1.20486066e-01, 3.77080180e-02, 1.14158325e-01, -6.50681928e-02, 1.03382617e-02, 1.17891498e-01, 1.13154747e-01, -1.49052702e-02, 1.28893867e-01, 1.12219512e-01], [-2.23867983e-01, -9.79400948e-02, 7.37103820e-02, -1.05197895e-02, 3.75595838e-02, 1.80490598e-01, 6.83145374e-02, -3.09509300e-02, 1.42565176e-01, 8.05927664e-02], [-2.32092351e-01, -3.42734642e-02, -5.15977889e-02, -1.75458089e-01, 1.46448284e-01, 1.80426955e-01, 1.52164772e-01, -2.57370695e-02, 1.26812875e-01, 1.22049123e-01], [-9.45013613e-02, 5.85526973e-02, 1.47456676e-02, -4.40606587e-02, 4.86647561e-02, 6.28624633e-02, 3.69989276e-02, -3.68277319e-02, 3.56127135e-02, 3.10502797e-02], [-1.02712311e-01, 3.16979140e-02, 1.88253060e-01, -5.99608906e-02, 3.73450294e-02, 6.38176724e-02, 1.12240583e-01, 2.42183693e-02, 1.45670772e-02, -9.52028483e-03], [-1.62333213e-02, -1.42737105e-02, -5.79352975e-02, -1.01807326e-01, -7.93362781e-03, -7.22003728e-02, 1.49934232e-01, -1.19943202e-01, 9.22369361e-02, 1.46321565e-01], [-1.32534593e-01, 1.18380897e-02, 2.23980099e-03, -9.28303748e-02, -2.20538303e-02, 7.68908709e-02, 5.29715866e-02, -3.43324393e-02, -1.27909705e-02, -7.04141408e-02], [-8.10261145e-02, -8.95578321e-03, 3.96864787e-02, -1.21861629e-01, 7.98310041e-02, 1.56087667e-01, 9.11872089e-02, -2.29295418e-02, 5.64432219e-02, -3.55931222e-02], [-1.76416740e-01, 1.12043694e-02, -1.80068091e-02, -1.88012689e-01, 8.68914276e-02, 1.57958359e-01, 5.77907935e-02, -2.12088451e-02, 5.33877537e-02, 2.19271183e-02], [-2.70012528e-01, -1.26611829e-01, 3.10387388e-02, -7.24840909e-02, 1.03253610e-01, 8.91268626e-02, 1.38662308e-01, -6.25240132e-02, 2.36210316e-01, 1.40534222e-01], [-8.52961093e-02, -1.15273651e-02, -2.88792588e-02, -2.01282576e-02, 5.43357767e-02, 7.14191943e-02, 3.46604213e-02, -6.00920171e-02, 5.11362031e-02, 3.58160883e-02], [-1.63262367e-01, 2.44849995e-02, 3.81964818e-02, -3.93010303e-02, 3.95263731e-03, 9.11088511e-02, 3.88236046e-02, 1.33745335e-02, 1.00076631e-01, 6.05135933e-02], [-3.01809371e-01, -1.58440098e-01, 4.65333983e-02, -1.63946241e-01, -6.42775744e-02, 3.93286347e-04, 2.82839835e-01, -8.93663988e-02, 1.97781295e-01, 2.87044942e-01], [-2.15368003e-01, -4.83291782e-02, -8.29075277e-03, -1.01776704e-01, 1.43144801e-02, 1.82002857e-02, 2.76539754e-02, -1.94141679e-02, 8.87098238e-02, 6.60644472e-02], [-2.20715180e-01, -7.20694065e-02, -6.08972833e-02, -4.82957587e-02, 1.28858402e-01, 1.30042464e-01, 1.32807568e-01, -7.52742141e-02, 9.51702446e-02, 3.10119465e-02], [-1.09407350e-01, -5.27948700e-03, 1.29588693e-03, -2.61662379e-02, 3.01920641e-02, 1.13487415e-01, 8.23267922e-02, 1.92574020e-02, 2.31986474e-02, 4.13139611e-02], [-2.12277412e-01, -1.35507256e-01, 4.22930568e-02, -1.34565741e-01, 1.17879853e-01, 1.30573064e-01, 1.81054786e-01, -1.70722306e-01, 1.05854876e-01, 7.36362934e-02], [-1.78249478e-01, -7.55607188e-02, 7.75147527e-02, -2.14659080e-01, 3.26948166e-02, 7.76198730e-02, 1.08791113e-01, -2.38809325e-02, 1.79410487e-01, 1.94452941e-01], [-1.92162693e-01, -1.50472090e-01, -8.24331492e-02, -1.40473023e-02, 3.60646360e-02, -9.39090401e-02, 1.83859855e-01, -1.09493822e-01, -3.09051797e-02, 1.36017531e-01], [-9.21519399e-02, -1.53335631e-02, -5.56742400e-02, -9.68495384e-02, 2.35293470e-02, 2.53665410e-02, 1.79999322e-01, -7.10204691e-02, -7.29817525e-02, 4.50368747e-02], [-1.22261971e-01, -6.94630146e-02, -7.97796808e-03, -1.03088826e-01, -7.38603100e-02, 1.84892826e-02, 9.76646394e-02, -3.29037756e-02, -1.77134499e-02, 1.62288889e-01], [-6.78652674e-02, -1.08500615e-01, 5.66991530e-02, -9.52370912e-02, 5.28126955e-02, 1.05176866e-02, 1.73085481e-01, -1.37753151e-02, 1.95556954e-02, 1.38068855e-01], [-2.02808753e-01, -3.39423120e-02, 1.82233751e-03, -5.71424365e-02, 3.40205729e-02, 8.74454305e-02, 8.47227685e-03, -2.52498202e-02, 4.66104299e-02, 1.10718749e-01], [-9.52449068e-02, -3.35062481e-02, -1.00178778e-01, -9.72513855e-02, -3.58061343e-02, 3.04423086e-02, 5.70362583e-02, -4.03833576e-02, -4.28436548e-02, 9.73245874e-02], [-2.06081957e-01, -1.71493232e-01, 2.52560824e-02, -1.55212343e-01, -4.33478206e-02, 2.34177694e-01, 8.46128762e-02, 1.75322518e-02, 2.04347119e-01, 1.54971585e-01], [-1.95310384e-01, 1.30968075e-02, -9.68117267e-03, -7.31432810e-02, 1.02618083e-01, 1.59629256e-01, 1.66028887e-01, -7.12903216e-03, 1.78021699e-01, -2.17130631e-02], [-1.59163624e-01, -1.77137554e-05, 1.75410658e-02, -9.08103511e-02, 7.25786015e-02, 9.21041369e-02, 1.24915361e-01, -6.55939505e-02, -1.13440230e-02, 1.03661232e-01], [-1.93366870e-01, -4.36344892e-02, 1.37750164e-01, -1.91939399e-01, -1.50268525e-03, 8.03942382e-02, 2.15812266e-01, 5.38492575e-02, 1.36685073e-01, 2.22119391e-01], [-1.65946245e-01, 7.89588690e-03, -1.65037125e-01, -1.23690292e-01, -8.57629776e-02, -2.55736727e-02, 1.67541012e-01, -6.63827211e-02, 2.98694819e-02, 1.71927184e-01], [-1.56264767e-01, -1.72245800e-02, -4.98924702e-02, -2.98387632e-02, 2.80477256e-02, 4.94132042e-02, 4.89805043e-02, 1.96998678e-02, -4.14144360e-02, -5.05549274e-02], [-1.46449029e-01, -1.12528354e-01, -4.66653258e-02, -3.78398523e-02, 7.60737807e-03, -2.70657167e-02, 1.11277811e-01, 6.37479573e-02, -2.39458829e-02, 1.22067556e-01], [-1.92323536e-01, -1.43002480e-01, 5.29062748e-03, -1.70663983e-01, 8.39572400e-03, 6.37906119e-02, 1.24084033e-01, 6.02792688e-02, 7.18353763e-02, 5.03963791e-03], [-1.70977920e-01, 1.04207098e-02, 1.18544906e-01, -4.29532528e-02, -3.53983864e-02, 1.80302024e-01, 8.08775946e-02, 3.19045782e-02, 2.52931342e-02, 1.29424319e-01], [-2.13301033e-01, -6.96119964e-02, 2.32847631e-02, -7.73920864e-02, 1.10387571e-01, 1.13307782e-01, 1.41805351e-01, -5.19381016e-02, 1.15313083e-01, 1.40049949e-01], [-1.71651557e-01, -5.98860830e-02, -3.92800570e-03, -1.04376137e-01, 7.78115019e-02, 6.84583709e-02, 2.51923770e-01, -1.05199262e-01, 1.64517179e-01, 2.18875334e-01], [-2.60777414e-01, -8.93031508e-02, 1.27723843e-01, -1.97950065e-01, 1.19145498e-01, 7.30907321e-02, 2.23771721e-01, -6.83849230e-02, 3.68930906e-01, 1.86811388e-01], [-2.38028213e-01, 1.11199915e-03, 2.25015372e-01, 8.22724327e-02, -1.14511400e-01, 1.57513067e-01, 5.22858277e-02, 2.13724375e-03, 3.15639377e-02, 2.08704025e-01], [-1.46687120e-01, -1.10313833e-01, -1.16352811e-02, -1.44550815e-01, 2.09794566e-02, 1.47883072e-02, 3.96856442e-02, -2.15019658e-03, -4.90810722e-02, 1.34708211e-01], [-2.02591017e-01, -2.29728431e-01, 6.73423260e-02, -1.24901496e-01, -1.38434023e-02, 8.64367038e-02, 1.22342721e-01, 1.67826824e-02, 1.65354639e-01, 1.83434993e-01], [-2.25799978e-01, -1.02682747e-01, 9.48531851e-02, -9.38871950e-02, 1.03806734e-01, 2.04695478e-01, 8.09893832e-02, -1.45416632e-02, 1.33486420e-01, -6.27665371e-02], [-1.19375348e-01, 2.23235339e-02, 1.04302749e-01, -1.11149743e-01, 6.12434298e-02, 6.89433664e-02, 2.08741099e-01, -3.81497070e-02, -1.42122135e-02, 7.65201449e-03]], dtype=float32)>} 2022-01-26 05:41:53.590742: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
Puoi anche caricare ed eseguire inferenze in modo distribuito:
another_strategy = tf.distribute.MirroredStrategy()
with another_strategy.scope():
loaded = tf.saved_model.load(saved_model_path)
inference_func = loaded.signatures[DEFAULT_FUNCTION_KEY]
dist_predict_dataset = another_strategy.experimental_distribute_dataset(
predict_dataset)
# Calling the function in a distributed manner
for batch in dist_predict_dataset:
another_strategy.run(inference_func,args=(batch,))
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) 2022-01-26 05:41:53.931428: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:547] The `assert_cardinality` transformation is currently not handled by the auto-shard rewrite and will be removed. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
La chiamata alla funzione ripristinata è solo un passaggio in avanti sul modello salvato (previsione). E se volessi continuare ad allenare la funzione caricata? O incorporare la funzione caricata in un modello più grande? Una pratica comune consiste nell'avvolgere questo oggetto caricato in un livello Keras per ottenere ciò. Fortunatamente, TF Hub ha hub.KerasLayer per questo scopo, mostrato qui:
import tensorflow_hub as hub
def build_model(loaded):
x = tf.keras.layers.Input(shape=(28, 28, 1), name='input_x')
# Wrap what's loaded to a KerasLayer
keras_layer = hub.KerasLayer(loaded, trainable=True)(x)
model = tf.keras.Model(x, keras_layer)
return model
another_strategy = tf.distribute.MirroredStrategy()
with another_strategy.scope():
loaded = tf.saved_model.load(saved_model_path)
model = build_model(loaded)
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(),
metrics=[tf.metrics.SparseCategoricalAccuracy()])
model.fit(train_dataset, epochs=2)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) Epoch 1/2 2022-01-26 05:41:55.594317: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:547] The `assert_cardinality` transformation is currently not handled by the auto-shard rewrite and will be removed. 938/938 [==============================] - 6s 3ms/step - loss: 0.1910 - sparse_categorical_accuracy: 0.9442 Epoch 2/2 938/938 [==============================] - 3s 4ms/step - loss: 0.0633 - sparse_categorical_accuracy: 0.9813
Come puoi vedere, hub.KerasLayer
il risultato caricato da tf.saved_model.load()
in un livello Keras che può essere utilizzato per costruire un altro modello. Questo è molto utile per trasferire l'apprendimento.
Quale API dovrei usare?
Per il salvataggio, se si lavora con un modello keras, si consiglia quasi sempre di utilizzare l'API model.save()
di Keras. Se quello che stai salvando non è un modello Keras, l'API di livello inferiore è la tua unica scelta.
Per il caricamento, quale API usi dipende da cosa vuoi ottenere dall'API di caricamento. Se non puoi (o non vuoi) ottenere un modello Keras, usa tf.saved_model.load()
. Altrimenti, usa tf.keras.models.load_model()
. Tieni presente che puoi recuperare un modello Keras solo se hai salvato un modello Keras.
È possibile combinare e abbinare le API. Puoi salvare un modello Keras con model.save
e caricare un modello non Keras con l'API di basso livello, tf.saved_model.load
.
model = get_model()
# Saving the model using Keras's save() API
model.save(keras_model_path)
another_strategy = tf.distribute.MirroredStrategy()
# Loading the model using lower level API
with another_strategy.scope():
loaded = tf.saved_model.load(keras_model_path)
INFO:tensorflow:Assets written to: /tmp/keras_save/assets INFO:tensorflow:Assets written to: /tmp/keras_save/assets INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
Salvataggio/Caricamento da dispositivo locale
Quando si salva e si carica da un dispositivo io locale durante l'esecuzione in remoto, ad esempio utilizzando una TPU cloud, è necessario utilizzare l'opzione experimental_io_device
per impostare il dispositivo io su localhost.
model = get_model()
# Saving the model to a path on localhost.
saved_model_path = "/tmp/tf_save"
save_options = tf.saved_model.SaveOptions(experimental_io_device='/job:localhost')
model.save(saved_model_path, options=save_options)
# Loading the model from a path on localhost.
another_strategy = tf.distribute.MirroredStrategy()
with another_strategy.scope():
load_options = tf.saved_model.LoadOptions(experimental_io_device='/job:localhost')
loaded = tf.keras.models.load_model(saved_model_path, options=load_options)
INFO:tensorflow:Assets written to: /tmp/tf_save/assets INFO:tensorflow:Assets written to: /tmp/tf_save/assets INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',) INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
Avvertenze
Un caso speciale è quando hai un modello Keras che non ha input ben definiti. Ad esempio, un modello sequenziale può essere creato senza forme di input ( Sequential([Dense(3), ...]
). Anche i modelli sottoclassi non hanno input ben definiti dopo l'inizializzazione. In questo caso, dovresti attenerti al API di livello inferiore sia sul salvataggio che sul caricamento, altrimenti verrà visualizzato un errore.
Per verificare se il tuo modello ha input ben definiti, controlla se model.inputs
è None
. Se non è None
, siete tutti a posto. Le forme di input vengono definite automaticamente quando il modello viene utilizzato in .fit
, .evaluate
, .predict
o quando si chiama il modello ( model(inputs)
).
Ecco un esempio:
class SubclassedModel(tf.keras.Model):
output_name = 'output_layer'
def __init__(self):
super(SubclassedModel, self).__init__()
self._dense_layer = tf.keras.layers.Dense(
5, dtype=tf.dtypes.float32, name=self.output_name)
def call(self, inputs):
return self._dense_layer(inputs)
my_model = SubclassedModel()
# my_model.save(keras_model_path) # ERROR!
tf.saved_model.save(my_model, saved_model_path)
WARNING:tensorflow:Skipping full serialization of Keras layer <__main__.SubclassedModel object at 0x7f3ad00f3510>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <__main__.SubclassedModel object at 0x7f3ad00f3510>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.layers.core.dense.Dense object at 0x7f3ad00f3e90>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.layers.core.dense.Dense object at 0x7f3ad00f3e90>, because it is not built. INFO:tensorflow:Assets written to: /tmp/tf_save/assets INFO:tensorflow:Assets written to: /tmp/tf_save/assets