Szkolenie rozproszone z Keras

Zobacz na TensorFlow.org Uruchom w Google Colab Wyświetl źródło na GitHub Pobierz notatnik

Przegląd

Interfejs API tf.distribute.Strategy zapewnia abstrakcję do dystrybucji szkolenia na wiele jednostek przetwarzania. Umożliwia przeprowadzanie rozproszonych szkoleń przy użyciu istniejących modeli i kodu szkoleniowego przy minimalnych zmianach.

W tym samouczku pokazano, jak używać tf.distribute.MirroredStrategy do wykonywania replikacji na wykresie z uczeniem synchronicznym na wielu procesorach graficznych na jednym komputerze . Strategia zasadniczo kopiuje wszystkie zmienne modelu do każdego procesora. Następnie używa all-reduce do połączenia gradientów ze wszystkich procesorów i stosuje połączoną wartość do wszystkich kopii modelu.

Użyjesz interfejsów API tf.keras do zbudowania modelu i Model.fit do jego uczenia. (Aby dowiedzieć się więcej o rozproszonym szkoleniu z niestandardową pętlą treningową i MirroredStrategy , zapoznaj się z tym samouczkiem ).

MirroredStrategy szkoli Twój model na wielu procesorach graficznych na jednej maszynie. Aby trenować synchronicznie na wielu procesorach graficznych na wielu procesach roboczych, użyj tf.distribute.MultiWorkerMirroredStrategy z Keras Model.fit lub niestandardowej pętli szkoleniowej . Aby poznać inne opcje, zapoznaj się z przewodnikiem dotyczącym szkoleń rozproszonych .

Aby dowiedzieć się więcej o różnych innych strategiach, zapoznaj się z przewodnikiem Szkolenie rozproszone z TensorFlow .

Ustawiać

import tensorflow_datasets as tfds
import tensorflow as tf

import os

# Load the TensorBoard notebook extension.
%load_ext tensorboard
print(tf.__version__)
2.8.0-rc1

Pobierz zbiór danych

Załaduj zestaw danych MNIST z zestawów danych TensorFlow . Zwraca zestaw danych w formacie tf.data .

Ustawienie argumentu with_info na True włącza metadane dla całego zestawu danych, który jest zapisywany tutaj w info . Ten obiekt metadanych zawiera między innymi liczbę pociągów i przykładów testowych.

datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True)

mnist_train, mnist_test = datasets['train'], datasets['test']

Zdefiniuj strategię dystrybucji

Utwórz obiekt MirroredStrategy . To obsłuży dystrybucję i zapewni menedżera kontekstu ( MirroredStrategy.scope ) do zbudowania twojego modelu wewnątrz.

strategy = tf.distribute.MirroredStrategy()
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
print('Number of devices: {}'.format(strategy.num_replicas_in_sync))
Number of devices: 1

Skonfiguruj potok wejściowy

Podczas trenowania modelu z wieloma procesorami GPU można efektywnie wykorzystać dodatkową moc obliczeniową, zwiększając rozmiar partii. Ogólnie rzecz biorąc, używaj największego rozmiaru partii, który pasuje do pamięci GPU i odpowiednio dostosuj szybkość uczenia się.

# You can also do info.splits.total_num_examples to get the total
# number of examples in the dataset.

num_train_examples = info.splits['train'].num_examples
num_test_examples = info.splits['test'].num_examples

BUFFER_SIZE = 10000

BATCH_SIZE_PER_REPLICA = 64
BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync

Zdefiniuj funkcję, która normalizuje wartości pikseli obrazu z zakresu [0, 255] do zakresu [0, 1] ( skalowanie cech ):

def scale(image, label):
  image = tf.cast(image, tf.float32)
  image /= 255

  return image, label

Zastosuj tę funkcję scale do danych uczących i testowych, a następnie użyj interfejsów API tf.data.Dataset do przetasowania danych uczących ( Dataset.shuffle ) i wsadowych ( Dataset.batch ). Zwróć uwagę, że przechowujesz również pamięć podręczną danych treningowych, aby poprawić wydajność ( Dataset.cache ).

train_dataset = mnist_train.map(scale).cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
eval_dataset = mnist_test.map(scale).batch(BATCH_SIZE)

Stwórz model

Utwórz i skompiluj model Keras w kontekście Strategy.scope :

with strategy.scope():
  model = tf.keras.Sequential([
      tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),
      tf.keras.layers.MaxPooling2D(),
      tf.keras.layers.Flatten(),
      tf.keras.layers.Dense(64, activation='relu'),
      tf.keras.layers.Dense(10)
  ])

  model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                optimizer=tf.keras.optimizers.Adam(),
                metrics=['accuracy'])
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

Zdefiniuj wywołania zwrotne

Zdefiniuj następujące tf.keras.callbacks :

W celach ilustracyjnych dodaj niestandardowe wywołanie zwrotne o nazwie PrintLR , aby wyświetlić szybkość uczenia się w notatniku.

# Define the checkpoint directory to store the checkpoints.
checkpoint_dir = './training_checkpoints'
# Define the name of the checkpoint files.
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")
# Define a function for decaying the learning rate.
# You can define any decay function you need.
def decay(epoch):
  if epoch < 3:
    return 1e-3
  elif epoch >= 3 and epoch < 7:
    return 1e-4
  else:
    return 1e-5
# Define a callback for printing the learning rate at the end of each epoch.
class PrintLR(tf.keras.callbacks.Callback):
  def on_epoch_end(self, epoch, logs=None):
    print('\nLearning rate for epoch {} is {}'.format(epoch + 1,
                                                      model.optimizer.lr.numpy()))
# Put all the callbacks together.
callbacks = [
    tf.keras.callbacks.TensorBoard(log_dir='./logs'),
    tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix,
                                       save_weights_only=True),
    tf.keras.callbacks.LearningRateScheduler(decay),
    PrintLR()
]

Trenuj i oceniaj

Teraz przeszkol model w zwykły sposób, wywołując Model.fit na modelu i przekazując zestaw danych utworzony na początku samouczka. Ten krok jest taki sam, niezależnie od tego, czy prowadzisz szkolenie, czy nie.

EPOCHS = 12

model.fit(train_dataset, epochs=EPOCHS, callbacks=callbacks)
2022-01-26 05:38:28.865380: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:547] The `assert_cardinality` transformation is currently not handled by the auto-shard rewrite and will be removed.
Epoch 1/12
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
933/938 [============================>.] - ETA: 0s - loss: 0.2029 - accuracy: 0.9399
Learning rate for epoch 1 is 0.0010000000474974513
938/938 [==============================] - 10s 4ms/step - loss: 0.2022 - accuracy: 0.9401 - lr: 0.0010
Epoch 2/12
930/938 [============================>.] - ETA: 0s - loss: 0.0654 - accuracy: 0.9813
Learning rate for epoch 2 is 0.0010000000474974513
938/938 [==============================] - 3s 3ms/step - loss: 0.0652 - accuracy: 0.9813 - lr: 0.0010
Epoch 3/12
931/938 [============================>.] - ETA: 0s - loss: 0.0453 - accuracy: 0.9864
Learning rate for epoch 3 is 0.0010000000474974513
938/938 [==============================] - 3s 3ms/step - loss: 0.0453 - accuracy: 0.9864 - lr: 0.0010
Epoch 4/12
923/938 [============================>.] - ETA: 0s - loss: 0.0246 - accuracy: 0.9933
Learning rate for epoch 4 is 9.999999747378752e-05
938/938 [==============================] - 3s 3ms/step - loss: 0.0244 - accuracy: 0.9934 - lr: 1.0000e-04
Epoch 5/12
929/938 [============================>.] - ETA: 0s - loss: 0.0211 - accuracy: 0.9944
Learning rate for epoch 5 is 9.999999747378752e-05
938/938 [==============================] - 3s 3ms/step - loss: 0.0212 - accuracy: 0.9944 - lr: 1.0000e-04
Epoch 6/12
930/938 [============================>.] - ETA: 0s - loss: 0.0192 - accuracy: 0.9950
Learning rate for epoch 6 is 9.999999747378752e-05
938/938 [==============================] - 3s 3ms/step - loss: 0.0194 - accuracy: 0.9950 - lr: 1.0000e-04
Epoch 7/12
927/938 [============================>.] - ETA: 0s - loss: 0.0179 - accuracy: 0.9953
Learning rate for epoch 7 is 9.999999747378752e-05
938/938 [==============================] - 3s 3ms/step - loss: 0.0179 - accuracy: 0.9953 - lr: 1.0000e-04
Epoch 8/12
938/938 [==============================] - ETA: 0s - loss: 0.0153 - accuracy: 0.9966
Learning rate for epoch 8 is 9.999999747378752e-06
938/938 [==============================] - 3s 3ms/step - loss: 0.0153 - accuracy: 0.9966 - lr: 1.0000e-05
Epoch 9/12
927/938 [============================>.] - ETA: 0s - loss: 0.0151 - accuracy: 0.9966
Learning rate for epoch 9 is 9.999999747378752e-06
938/938 [==============================] - 3s 3ms/step - loss: 0.0150 - accuracy: 0.9966 - lr: 1.0000e-05
Epoch 10/12
935/938 [============================>.] - ETA: 0s - loss: 0.0148 - accuracy: 0.9966
Learning rate for epoch 10 is 9.999999747378752e-06
938/938 [==============================] - 3s 3ms/step - loss: 0.0148 - accuracy: 0.9966 - lr: 1.0000e-05
Epoch 11/12
937/938 [============================>.] - ETA: 0s - loss: 0.0146 - accuracy: 0.9967
Learning rate for epoch 11 is 9.999999747378752e-06
938/938 [==============================] - 3s 3ms/step - loss: 0.0146 - accuracy: 0.9967 - lr: 1.0000e-05
Epoch 12/12
926/938 [============================>.] - ETA: 0s - loss: 0.0145 - accuracy: 0.9967
Learning rate for epoch 12 is 9.999999747378752e-06
938/938 [==============================] - 3s 3ms/step - loss: 0.0144 - accuracy: 0.9967 - lr: 1.0000e-05
<keras.callbacks.History at 0x7fad70067c10>

Sprawdź zapisane punkty kontrolne:

# Check the checkpoint directory.
ls {checkpoint_dir}
checkpoint           ckpt_4.data-00000-of-00001
ckpt_1.data-00000-of-00001   ckpt_4.index
ckpt_1.index             ckpt_5.data-00000-of-00001
ckpt_10.data-00000-of-00001  ckpt_5.index
ckpt_10.index            ckpt_6.data-00000-of-00001
ckpt_11.data-00000-of-00001  ckpt_6.index
ckpt_11.index            ckpt_7.data-00000-of-00001
ckpt_12.data-00000-of-00001  ckpt_7.index
ckpt_12.index            ckpt_8.data-00000-of-00001
ckpt_2.data-00000-of-00001   ckpt_8.index
ckpt_2.index             ckpt_9.data-00000-of-00001
ckpt_3.data-00000-of-00001   ckpt_9.index
ckpt_3.index

Aby sprawdzić, jak dobrze model działa, załaduj najnowszy punkt kontrolny i wywołaj Model.evaluate na danych testowych:

model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))

eval_loss, eval_acc = model.evaluate(eval_dataset)

print('Eval loss: {}, Eval accuracy: {}'.format(eval_loss, eval_acc))
2022-01-26 05:39:15.260539: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:547] The `assert_cardinality` transformation is currently not handled by the auto-shard rewrite and will be removed.
157/157 [==============================] - 2s 4ms/step - loss: 0.0373 - accuracy: 0.9879
Eval loss: 0.03732967749238014, Eval accuracy: 0.9879000186920166

Aby zwizualizować wyniki, uruchom TensorBoard i przejrzyj logi:

%tensorboard --logdir=logs

ls -sh ./logs
total 4.0K
4.0K train

Eksportuj do zapisanego modelu

Wyeksportuj wykres i zmienne do formatu SavedModel niezależnego od platformy przy użyciu Model.save . Po zapisaniu modelu możesz go załadować z lub bez Strategy.scope .

path = 'saved_model/'
model.save(path, save_format='tf')
2022-01-26 05:39:18.012847: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: saved_model/assets
INFO:tensorflow:Assets written to: saved_model/assets

Teraz załaduj model bez Strategy.scope :

unreplicated_model = tf.keras.models.load_model(path)

unreplicated_model.compile(
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=tf.keras.optimizers.Adam(),
    metrics=['accuracy'])

eval_loss, eval_acc = unreplicated_model.evaluate(eval_dataset)

print('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc))
157/157 [==============================] - 1s 2ms/step - loss: 0.0373 - accuracy: 0.9879
Eval loss: 0.03732967749238014, Eval Accuracy: 0.9879000186920166

Załaduj model za pomocą Strategy.scope :

with strategy.scope():
  replicated_model = tf.keras.models.load_model(path)
  replicated_model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                           optimizer=tf.keras.optimizers.Adam(),
                           metrics=['accuracy'])

  eval_loss, eval_acc = replicated_model.evaluate(eval_dataset)
  print ('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc))
2022-01-26 05:39:19.489971: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:547] The `assert_cardinality` transformation is currently not handled by the auto-shard rewrite and will be removed.
157/157 [==============================] - 3s 3ms/step - loss: 0.0373 - accuracy: 0.9879
Eval loss: 0.03732967749238014, Eval Accuracy: 0.9879000186920166

Dodatkowe zasoby

Więcej przykładów wykorzystujących różne strategie dystrybucji z API Keras Model.fit :

  1. Samouczek Rozwiązywanie zadań GLUE przy użyciu BERT na TPU wykorzystuje tf.distribute.MirroredStrategy do uczenia na GPU i tf.distribute.TPUStrategy — na TPU.
  2. Samouczek dotyczący zapisywania i ładowania modelu przy użyciu strategii dystrybucji pokazuje, jak używać interfejsów API SavedModel z tf.distribute.Strategy .
  3. Oficjalne modele TensorFlow można skonfigurować do obsługi wielu strategii dystrybucji.

Aby dowiedzieć się więcej o strategiach dystrybucji TensorFlow:

  1. Szkolenie niestandardowe za pomocą samouczka tf.distribute.Strategy pokazuje, jak używać tf.distribute.MirroredStrategy do szkolenia pojedynczego pracownika z niestandardową pętlą treningową.
  2. Szkolenie dla wielu pracowników przy użyciu samouczka Keras pokazuje, jak korzystać z MultiWorkerMirroredStrategy z Model.fit .
  3. Samouczek Niestandardowa pętla szkoleniowa z Keras i MultiWorkerMirroredStrategy pokazuje, jak używać MultiWorkerMirroredStrategy z Keras i niestandardową pętlą szkoleniową.
  4. Szkolenie rozproszone w przewodniku TensorFlow zawiera przegląd dostępnych strategii dystrybucji.
  5. Przewodnik Lepsza wydajność dzięki tf.function zawiera informacje o innych strategiach i narzędziach, takich jak TensorFlow Profiler , których można użyć do optymalizacji wydajności modeli TensorFlow.