הצג באתר TensorFlow.org | הפעל בגוגל קולאב | צפה במקור ב-GitHub | הורד מחברת |
מדריך זה מראה לך כיצד ליצור תווים מוזיקליים באמצעות RNN פשוט. אתה תאמן מודל באמצעות אוסף של קבצי MIDI של פסנתר ממערך הנתונים של MAESTRO . בהינתן רצף של הערות, המודל שלך ילמד לחזות את התו הבא ברצף. אתה יכול ליצור רצפים ארוכים יותר של הערות על ידי קריאה חוזרת למודל.
מדריך זה מכיל קוד מלא לניתוח ויצירת קובצי MIDI. תוכל ללמוד עוד על אופן פעולת RNN על ידי ביקור ביצירת טקסט עם RNN .
להכין
מדריך זה משתמש בספריית pretty_midi
כדי ליצור ולנתח קבצי MIDI, ו- pyfluidsynth
ליצירת השמעת אודיו ב-Colab.
sudo apt install -y fluidsynth
The following packages were automatically installed and are no longer required: linux-gcp-5.4-headers-5.4.0-1040 linux-gcp-5.4-headers-5.4.0-1043 linux-gcp-5.4-headers-5.4.0-1044 linux-gcp-5.4-headers-5.4.0-1049 linux-headers-5.4.0-1049-gcp linux-image-5.4.0-1049-gcp linux-modules-5.4.0-1049-gcp linux-modules-extra-5.4.0-1049-gcp Use 'sudo apt autoremove' to remove them. The following additional packages will be installed: fluid-soundfont-gm libasyncns0 libdouble-conversion1 libevdev2 libflac8 libfluidsynth1 libgudev-1.0-0 libinput-bin libinput10 libjack-jackd2-0 libmtdev1 libogg0 libpulse0 libqt5core5a libqt5dbus5 libqt5gui5 libqt5network5 libqt5svg5 libqt5widgets5 libqt5x11extras5 libsamplerate0 libsndfile1 libvorbis0a libvorbisenc2 libwacom-bin libwacom-common libwacom2 libxcb-icccm4 libxcb-image0 libxcb-keysyms1 libxcb-randr0 libxcb-render-util0 libxcb-shape0 libxcb-util1 libxcb-xinerama0 libxcb-xkb1 libxkbcommon-x11-0 qsynth qt5-gtk-platformtheme qttranslations5-l10n Suggested packages: fluid-soundfont-gs timidity jackd2 pulseaudio qt5-image-formats-plugins qtwayland5 jackd The following NEW packages will be installed: fluid-soundfont-gm fluidsynth libasyncns0 libdouble-conversion1 libevdev2 libflac8 libfluidsynth1 libgudev-1.0-0 libinput-bin libinput10 libjack-jackd2-0 libmtdev1 libogg0 libpulse0 libqt5core5a libqt5dbus5 libqt5gui5 libqt5network5 libqt5svg5 libqt5widgets5 libqt5x11extras5 libsamplerate0 libsndfile1 libvorbis0a libvorbisenc2 libwacom-bin libwacom-common libwacom2 libxcb-icccm4 libxcb-image0 libxcb-keysyms1 libxcb-randr0 libxcb-render-util0 libxcb-shape0 libxcb-util1 libxcb-xinerama0 libxcb-xkb1 libxkbcommon-x11-0 qsynth qt5-gtk-platformtheme qttranslations5-l10n 0 upgraded, 41 newly installed, 0 to remove and 120 not upgraded. Need to get 132 MB of archives. After this operation, 198 MB of additional disk space will be used. Get:1 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libogg0 amd64 1.3.2-1 [17.2 kB] Get:2 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libdouble-conversion1 amd64 2.0.1-4ubuntu1 [33.0 kB] Get:3 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5core5a amd64 5.9.5+dfsg-0ubuntu2.6 [2035 kB] Get:4 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libevdev2 amd64 1.5.8+dfsg-1ubuntu0.1 [28.9 kB] Get:5 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libmtdev1 amd64 1.1.5-1ubuntu3 [13.8 kB] Get:6 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libgudev-1.0-0 amd64 1:232-2 [13.6 kB] Get:7 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libwacom-common all 0.29-1 [36.9 kB] Get:8 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libwacom2 amd64 0.29-1 [17.7 kB] Get:9 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libinput-bin amd64 1.10.4-1ubuntu0.18.04.2 [11.2 kB] Get:10 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libinput10 amd64 1.10.4-1ubuntu0.18.04.2 [86.2 kB] Get:11 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5dbus5 amd64 5.9.5+dfsg-0ubuntu2.6 [195 kB] Get:12 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5network5 amd64 5.9.5+dfsg-0ubuntu2.6 [634 kB] Get:13 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-icccm4 amd64 0.4.1-1ubuntu1 [10.4 kB] Get:14 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-util1 amd64 0.4.0-0ubuntu3 [11.2 kB] Get:15 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-image0 amd64 0.4.0-1build1 [12.3 kB] Get:16 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-keysyms1 amd64 0.4.0-1 [8406 B] Get:17 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libxcb-randr0 amd64 1.13-2~ubuntu18.04 [16.4 kB] Get:18 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-render-util0 amd64 0.3.9-1 [9638 B] Get:19 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libxcb-shape0 amd64 1.13-2~ubuntu18.04 [5972 B] Get:20 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libxcb-xinerama0 amd64 1.13-2~ubuntu18.04 [5264 B] Get:21 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libxcb-xkb1 amd64 1.13-2~ubuntu18.04 [30.1 kB] Get:22 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libxkbcommon-x11-0 amd64 0.8.2-1~ubuntu18.04.1 [13.4 kB] Get:23 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5gui5 amd64 5.9.5+dfsg-0ubuntu2.6 [2568 kB] Get:24 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5widgets5 amd64 5.9.5+dfsg-0ubuntu2.6 [2203 kB] Get:25 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5svg5 amd64 5.9.5-0ubuntu1.1 [129 kB] Get:26 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 fluid-soundfont-gm all 3.1-5.1 [119 MB] Get:27 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libsamplerate0 amd64 0.1.9-1 [938 kB] Get:28 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libjack-jackd2-0 amd64 1.9.12~dfsg-2 [263 kB] Get:29 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libasyncns0 amd64 0.8-6 [12.1 kB] Get:30 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libflac8 amd64 1.3.2-1 [213 kB] Get:31 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libvorbis0a amd64 1.3.5-4.2 [86.4 kB] Get:32 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libvorbisenc2 amd64 1.3.5-4.2 [70.7 kB] Get:33 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libsndfile1 amd64 1.0.28-4ubuntu0.18.04.2 [170 kB] Get:34 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpulse0 amd64 1:11.1-1ubuntu7.11 [266 kB] Get:35 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 libfluidsynth1 amd64 1.1.9-1 [137 kB] Get:36 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 fluidsynth amd64 1.1.9-1 [20.7 kB] Get:37 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 libqt5x11extras5 amd64 5.9.5-0ubuntu1 [8596 B] Get:38 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libwacom-bin amd64 0.29-1 [4712 B] Get:39 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 qsynth amd64 0.5.0-2 [191 kB] Get:40 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 qt5-gtk-platformtheme amd64 5.9.5+dfsg-0ubuntu2.6 [117 kB] Get:41 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 qttranslations5-l10n all 5.9.5-0ubuntu1 [1485 kB] Fetched 132 MB in 9s (14.0 MB/s) Extracting templates from packages: 100% 7[0;23r8[1ASelecting previously unselected package libogg0:amd64. (Reading database ... 285125 files and directories currently installed.) Preparing to unpack .../00-libogg0_1.3.2-1_amd64.deb ... 7[24;0fProgress: [ 0%] [..........................................................] 8Unpacking libogg0:amd64 (1.3.2-1) ... 7[24;0fProgress: [ 1%] [..........................................................] 8Selecting previously unselected package libdouble-conversion1:amd64. Preparing to unpack .../01-libdouble-conversion1_2.0.1-4ubuntu1_amd64.deb ... Unpacking libdouble-conversion1:amd64 (2.0.1-4ubuntu1) ... 7[24;0fProgress: [ 2%] [#.........................................................] 8Selecting previously unselected package libqt5core5a:amd64. Preparing to unpack .../02-libqt5core5a_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... 7[24;0fProgress: [ 3%] [#.........................................................] 8Unpacking libqt5core5a:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 4%] [##........................................................] 8Selecting previously unselected package libevdev2:amd64. Preparing to unpack .../03-libevdev2_1.5.8+dfsg-1ubuntu0.1_amd64.deb ... Unpacking libevdev2:amd64 (1.5.8+dfsg-1ubuntu0.1) ... 7[24;0fProgress: [ 5%] [###.......................................................] 8Selecting previously unselected package libmtdev1:amd64. Preparing to unpack .../04-libmtdev1_1.1.5-1ubuntu3_amd64.deb ... 7[24;0fProgress: [ 6%] [###.......................................................] 8Unpacking libmtdev1:amd64 (1.1.5-1ubuntu3) ... 7[24;0fProgress: [ 7%] [####......................................................] 8Selecting previously unselected package libgudev-1.0-0:amd64. Preparing to unpack .../05-libgudev-1.0-0_1%3a232-2_amd64.deb ... Unpacking libgudev-1.0-0:amd64 (1:232-2) ... 7[24;0fProgress: [ 8%] [####......................................................] 8Selecting previously unselected package libwacom-common. Preparing to unpack .../06-libwacom-common_0.29-1_all.deb ... 7[24;0fProgress: [ 9%] [#####.....................................................] 8Unpacking libwacom-common (0.29-1) ... 7[24;0fProgress: [ 10%] [#####.....................................................] 8Selecting previously unselected package libwacom2:amd64. Preparing to unpack .../07-libwacom2_0.29-1_amd64.deb ... Unpacking libwacom2:amd64 (0.29-1) ... 7[24;0fProgress: [ 11%] [######....................................................] 8Selecting previously unselected package libinput-bin. Preparing to unpack .../08-libinput-bin_1.10.4-1ubuntu0.18.04.2_amd64.deb ... 7[24;0fProgress: [ 12%] [#######...................................................] 8Unpacking libinput-bin (1.10.4-1ubuntu0.18.04.2) ... 7[24;0fProgress: [ 13%] [#######...................................................] 8Selecting previously unselected package libinput10:amd64. Preparing to unpack .../09-libinput10_1.10.4-1ubuntu0.18.04.2_amd64.deb ... Unpacking libinput10:amd64 (1.10.4-1ubuntu0.18.04.2) ... 7[24;0fProgress: [ 14%] [########..................................................] 8Selecting previously unselected package libqt5dbus5:amd64. Preparing to unpack .../10-libqt5dbus5_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... 7[24;0fProgress: [ 15%] [########..................................................] 8Unpacking libqt5dbus5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 16%] [#########.................................................] 8Selecting previously unselected package libqt5network5:amd64. Preparing to unpack .../11-libqt5network5_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... Unpacking libqt5network5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 17%] [##########................................................] 8Selecting previously unselected package libxcb-icccm4:amd64. Preparing to unpack .../12-libxcb-icccm4_0.4.1-1ubuntu1_amd64.deb ... Unpacking libxcb-icccm4:amd64 (0.4.1-1ubuntu1) ... 7[24;0fProgress: [ 18%] [##########................................................] 8Selecting previously unselected package libxcb-util1:amd64. Preparing to unpack .../13-libxcb-util1_0.4.0-0ubuntu3_amd64.deb ... 7[24;0fProgress: [ 19%] [###########...............................................] 8Unpacking libxcb-util1:amd64 (0.4.0-0ubuntu3) ... 7[24;0fProgress: [ 20%] [###########...............................................] 8Selecting previously unselected package libxcb-image0:amd64. Preparing to unpack .../14-libxcb-image0_0.4.0-1build1_amd64.deb ... Unpacking libxcb-image0:amd64 (0.4.0-1build1) ... 7[24;0fProgress: [ 21%] [############..............................................] 8Selecting previously unselected package libxcb-keysyms1:amd64. Preparing to unpack .../15-libxcb-keysyms1_0.4.0-1_amd64.deb ... 7[24;0fProgress: [ 22%] [############..............................................] 8Unpacking libxcb-keysyms1:amd64 (0.4.0-1) ... 7[24;0fProgress: [ 23%] [#############.............................................] 8Selecting previously unselected package libxcb-randr0:amd64. Preparing to unpack .../16-libxcb-randr0_1.13-2~ubuntu18.04_amd64.deb ... Unpacking libxcb-randr0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 24%] [##############............................................] 8Selecting previously unselected package libxcb-render-util0:amd64. Preparing to unpack .../17-libxcb-render-util0_0.3.9-1_amd64.deb ... 7[24;0fProgress: [ 25%] [##############............................................] 8Unpacking libxcb-render-util0:amd64 (0.3.9-1) ... 7[24;0fProgress: [ 26%] [###############...........................................] 8Selecting previously unselected package libxcb-shape0:amd64. Preparing to unpack .../18-libxcb-shape0_1.13-2~ubuntu18.04_amd64.deb ... Unpacking libxcb-shape0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 27%] [###############...........................................] 8Selecting previously unselected package libxcb-xinerama0:amd64. Preparing to unpack .../19-libxcb-xinerama0_1.13-2~ubuntu18.04_amd64.deb ... 7[24;0fProgress: [ 28%] [################..........................................] 8Unpacking libxcb-xinerama0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 29%] [################..........................................] 8Selecting previously unselected package libxcb-xkb1:amd64. Preparing to unpack .../20-libxcb-xkb1_1.13-2~ubuntu18.04_amd64.deb ... Unpacking libxcb-xkb1:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 30%] [#################.........................................] 8Selecting previously unselected package libxkbcommon-x11-0:amd64. Preparing to unpack .../21-libxkbcommon-x11-0_0.8.2-1~ubuntu18.04.1_amd64.deb ... 7[24;0fProgress: [ 31%] [##################........................................] 8Unpacking libxkbcommon-x11-0:amd64 (0.8.2-1~ubuntu18.04.1) ... 7[24;0fProgress: [ 32%] [##################........................................] 8Selecting previously unselected package libqt5gui5:amd64. Preparing to unpack .../22-libqt5gui5_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... Unpacking libqt5gui5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 33%] [###################.......................................] 8Selecting previously unselected package libqt5widgets5:amd64. Preparing to unpack .../23-libqt5widgets5_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... Unpacking libqt5widgets5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 34%] [###################.......................................] 8Selecting previously unselected package libqt5svg5:amd64. Preparing to unpack .../24-libqt5svg5_5.9.5-0ubuntu1.1_amd64.deb ... 7[24;0fProgress: [ 35%] [####################......................................] 8Unpacking libqt5svg5:amd64 (5.9.5-0ubuntu1.1) ... 7[24;0fProgress: [ 36%] [#####################.....................................] 8Selecting previously unselected package fluid-soundfont-gm. Preparing to unpack .../25-fluid-soundfont-gm_3.1-5.1_all.deb ... Unpacking fluid-soundfont-gm (3.1-5.1) ... 7[24;0fProgress: [ 37%] [#####################.....................................] 8Selecting previously unselected package libsamplerate0:amd64. Preparing to unpack .../26-libsamplerate0_0.1.9-1_amd64.deb ... 7[24;0fProgress: [ 38%] [######################....................................] 8Unpacking libsamplerate0:amd64 (0.1.9-1) ... 7[24;0fProgress: [ 39%] [######################....................................] 8Selecting previously unselected package libjack-jackd2-0:amd64. Preparing to unpack .../27-libjack-jackd2-0_1.9.12~dfsg-2_amd64.deb ... Unpacking libjack-jackd2-0:amd64 (1.9.12~dfsg-2) ... 7[24;0fProgress: [ 40%] [#######################...................................] 8Selecting previously unselected package libasyncns0:amd64. Preparing to unpack .../28-libasyncns0_0.8-6_amd64.deb ... 7[24;0fProgress: [ 41%] [#######################...................................] 8Unpacking libasyncns0:amd64 (0.8-6) ... 7[24;0fProgress: [ 42%] [########################..................................] 8Selecting previously unselected package libflac8:amd64. Preparing to unpack .../29-libflac8_1.3.2-1_amd64.deb ... Unpacking libflac8:amd64 (1.3.2-1) ... 7[24;0fProgress: [ 43%] [#########################.................................] 8Selecting previously unselected package libvorbis0a:amd64. Preparing to unpack .../30-libvorbis0a_1.3.5-4.2_amd64.deb ... 7[24;0fProgress: [ 44%] [#########################.................................] 8Unpacking libvorbis0a:amd64 (1.3.5-4.2) ... 7[24;0fProgress: [ 45%] [##########################................................] 8Selecting previously unselected package libvorbisenc2:amd64. Preparing to unpack .../31-libvorbisenc2_1.3.5-4.2_amd64.deb ... Unpacking libvorbisenc2:amd64 (1.3.5-4.2) ... 7[24;0fProgress: [ 46%] [##########################................................] 8Selecting previously unselected package libsndfile1:amd64. Preparing to unpack .../32-libsndfile1_1.0.28-4ubuntu0.18.04.2_amd64.deb ... 7[24;0fProgress: [ 47%] [###########################...............................] 8Unpacking libsndfile1:amd64 (1.0.28-4ubuntu0.18.04.2) ... 7[24;0fProgress: [ 48%] [###########################...............................] 8Selecting previously unselected package libpulse0:amd64. Preparing to unpack .../33-libpulse0_1%3a11.1-1ubuntu7.11_amd64.deb ... Unpacking libpulse0:amd64 (1:11.1-1ubuntu7.11) ... 7[24;0fProgress: [ 49%] [############################..............................] 8Selecting previously unselected package libfluidsynth1:amd64. Preparing to unpack .../34-libfluidsynth1_1.1.9-1_amd64.deb ... 7[24;0fProgress: [ 50%] [#############################.............................] 8Unpacking libfluidsynth1:amd64 (1.1.9-1) ... Selecting previously unselected package fluidsynth. Preparing to unpack .../35-fluidsynth_1.1.9-1_amd64.deb ... 7[24;0fProgress: [ 51%] [#############################.............................] 8Unpacking fluidsynth (1.1.9-1) ... 7[24;0fProgress: [ 52%] [##############################............................] 8Selecting previously unselected package libqt5x11extras5:amd64. Preparing to unpack .../36-libqt5x11extras5_5.9.5-0ubuntu1_amd64.deb ... Unpacking libqt5x11extras5:amd64 (5.9.5-0ubuntu1) ... 7[24;0fProgress: [ 53%] [##############################............................] 8Selecting previously unselected package libwacom-bin. Preparing to unpack .../37-libwacom-bin_0.29-1_amd64.deb ... 7[24;0fProgress: [ 54%] [###############################...........................] 8Unpacking libwacom-bin (0.29-1) ... 7[24;0fProgress: [ 55%] [################################..........................] 8Selecting previously unselected package qsynth. Preparing to unpack .../38-qsynth_0.5.0-2_amd64.deb ... Unpacking qsynth (0.5.0-2) ... 7[24;0fProgress: [ 56%] [################################..........................] 8Selecting previously unselected package qt5-gtk-platformtheme:amd64. Preparing to unpack .../39-qt5-gtk-platformtheme_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... 7[24;0fProgress: [ 57%] [#################################.........................] 8Unpacking qt5-gtk-platformtheme:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 58%] [#################################.........................] 8Selecting previously unselected package qttranslations5-l10n. Preparing to unpack .../40-qttranslations5-l10n_5.9.5-0ubuntu1_all.deb ... Unpacking qttranslations5-l10n (5.9.5-0ubuntu1) ... 7[24;0fProgress: [ 59%] [##################################........................] 8Setting up libxcb-xinerama0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 60%] [##################################........................] 8Setting up libxcb-render-util0:amd64 (0.3.9-1) ... 7[24;0fProgress: [ 61%] [###################################.......................] 8Setting up libxcb-randr0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 62%] [####################################......................] 8Setting up libxcb-icccm4:amd64 (0.4.1-1ubuntu1) ... 7[24;0fProgress: [ 63%] [####################################......................] 8Setting up libasyncns0:amd64 (0.8-6) ... 7[24;0fProgress: [ 64%] [#####################################.....................] 8Setting up libwacom-common (0.29-1) ... 7[24;0fProgress: [ 65%] [#####################################.....................] 8Setting up libdouble-conversion1:amd64 (2.0.1-4ubuntu1) ... 7[24;0fProgress: [ 66%] [######################################....................] 8Setting up libevdev2:amd64 (1.5.8+dfsg-1ubuntu0.1) ... 7[24;0fProgress: [ 67%] [#######################################...................] 8Setting up fluid-soundfont-gm (3.1-5.1) ... 7[24;0fProgress: [ 68%] [#######################################...................] 8Setting up libxcb-util1:amd64 (0.4.0-0ubuntu3) ... 7[24;0fProgress: [ 69%] [########################################..................] 8Setting up libogg0:amd64 (1.3.2-1) ... 7[24;0fProgress: [ 70%] [########################################..................] 8Setting up qttranslations5-l10n (5.9.5-0ubuntu1) ... 7[24;0fProgress: [ 71%] [#########################################.................] 8Setting up libmtdev1:amd64 (1.1.5-1ubuntu3) ... 7[24;0fProgress: [ 72%] [#########################################.................] 8Setting up libxcb-shape0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 73%] [##########################################................] 8Setting up libgudev-1.0-0:amd64 (1:232-2) ... 7[24;0fProgress: [ 74%] [###########################################...............] 8Setting up libxcb-keysyms1:amd64 (0.4.0-1) ... 7[24;0fProgress: [ 75%] [###########################################...............] 8Setting up libsamplerate0:amd64 (0.1.9-1) ... 7[24;0fProgress: [ 76%] [############################################..............] 8Setting up libvorbis0a:amd64 (1.3.5-4.2) ... 7[24;0fProgress: [ 77%] [############################################..............] 8Setting up libxcb-xkb1:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 78%] [#############################################.............] 8Setting up libqt5core5a:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 79%] [#############################################.............] 8Setting up libqt5dbus5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 80%] [##############################################............] 8Setting up libqt5network5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 81%] [###############################################...........] 8Setting up libwacom2:amd64 (0.29-1) ... 7[24;0fProgress: [ 82%] [###############################################...........] 8Setting up libxcb-image0:amd64 (0.4.0-1build1) ... 7[24;0fProgress: [ 83%] [################################################..........] 8Setting up libflac8:amd64 (1.3.2-1) ... Setting up libinput-bin (1.10.4-1ubuntu0.18.04.2) ... 7[24;0fProgress: [ 84%] [################################################..........] 8Setting up libxkbcommon-x11-0:amd64 (0.8.2-1~ubuntu18.04.1) ... 7[24;0fProgress: [ 85%] [#################################################.........] 8Setting up libwacom-bin (0.29-1) ... 7[24;0fProgress: [ 86%] [##################################################........] 8Setting up libjack-jackd2-0:amd64 (1.9.12~dfsg-2) ... 7[24;0fProgress: [ 87%] [##################################################........] 8Setting up libvorbisenc2:amd64 (1.3.5-4.2) ... 7[24;0fProgress: [ 88%] [###################################################.......] 8Setting up libinput10:amd64 (1.10.4-1ubuntu0.18.04.2) ... 7[24;0fProgress: [ 89%] [###################################################.......] 8Setting up libsndfile1:amd64 (1.0.28-4ubuntu0.18.04.2) ... 7[24;0fProgress: [ 90%] [####################################################......] 8Setting up libqt5gui5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 91%] [####################################################......] 8Setting up qt5-gtk-platformtheme:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 92%] [#####################################################.....] 8Setting up libqt5x11extras5:amd64 (5.9.5-0ubuntu1) ... 7[24;0fProgress: [ 93%] [######################################################....] 8Setting up libqt5widgets5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 94%] [######################################################....] 8Setting up libpulse0:amd64 (1:11.1-1ubuntu7.11) ... 7[24;0fProgress: [ 95%] [#######################################################...] 8Setting up libqt5svg5:amd64 (5.9.5-0ubuntu1.1) ... 7[24;0fProgress: [ 96%] [#######################################################...] 8Setting up libfluidsynth1:amd64 (1.1.9-1) ... 7[24;0fProgress: [ 97%] [########################################################..] 8Setting up fluidsynth (1.1.9-1) ... 7[24;0fProgress: [ 98%] [########################################################..] 8Setting up qsynth (0.5.0-2) ... 7[24;0fProgress: [ 99%] [#########################################################.] 8Processing triggers for hicolor-icon-theme (0.17-2) ... Processing triggers for mime-support (3.60ubuntu1) ... Processing triggers for libc-bin (2.27-3ubuntu1.2) ... Processing triggers for udev (237-3ubuntu10.50) ... Processing triggers for man-db (2.8.3-2ubuntu0.1) ... 7[0;24r8[1A[J
pip install --upgrade pyfluidsynth
pip install pretty_midi
import collections
import datetime
import fluidsynth
import glob
import numpy as np
import pathlib
import pandas as pd
import pretty_midi
import seaborn as sns
import tensorflow as tf
from IPython import display
from matplotlib import pyplot as plt
from typing import Dict, List, Optional, Sequence, Tuple
seed = 42
tf.random.set_seed(seed)
np.random.seed(seed)
# Sampling rate for audio playback
_SAMPLING_RATE = 16000
הורד את מערך הנתונים של Maestro
data_dir = pathlib.Path('data/maestro-v2.0.0')
if not data_dir.exists():
tf.keras.utils.get_file(
'maestro-v2.0.0-midi.zip',
origin='https://storage.googleapis.com/magentadata/datasets/maestro/v2.0.0/maestro-v2.0.0-midi.zip',
extract=True,
cache_dir='.', cache_subdir='data',
)
Downloading data from https://storage.googleapis.com/magentadata/datasets/maestro/v2.0.0/maestro-v2.0.0-midi.zip 59244544/59243107 [==============================] - 3s 0us/step 59252736/59243107 [==============================] - 3s 0us/step
מערך הנתונים מכיל כ-1,200 קבצי MIDI.
filenames = glob.glob(str(data_dir/'**/*.mid*'))
print('Number of files:', len(filenames))
Number of files: 1282
עבד קובץ MIDI
ראשית, השתמש ב- pretty_midi
כדי לנתח קובץ MIDI בודד ולבדוק את הפורמט של התווים. אם תרצה להוריד את קובץ ה-MIDI שלהלן כדי לנגן במחשב שלך, תוכל לעשות זאת ב-colab על ידי כתיבת files.download(sample_file)
.
sample_file = filenames[1]
print(sample_file)
data/maestro-v2.0.0/2013/ORIG-MIDI_02_7_6_13_Group__MID--AUDIO_08_R1_2013_wav--3.midi
צור אובייקט PrettyMIDI
עבור קובץ ה-MIDI לדוגמה.
pm = pretty_midi.PrettyMIDI(sample_file)
הפעל את הקובץ לדוגמה. הטעינה של ווידג'ט ההפעלה עשויה להימשך מספר שניות.
def display_audio(pm: pretty_midi.PrettyMIDI, seconds=30):
waveform = pm.fluidsynth(fs=_SAMPLING_RATE)
# Take a sample of the generated waveform to mitigate kernel resets
waveform_short = waveform[:seconds*_SAMPLING_RATE]
return display.Audio(waveform_short, rate=_SAMPLING_RATE)
display_audio(pm)
תעשה קצת בדיקה על קובץ ה-MIDI. באילו סוגי מכשירים משתמשים?
print('Number of instruments:', len(pm.instruments))
instrument = pm.instruments[0]
instrument_name = pretty_midi.program_to_instrument_name(instrument.program)
print('Instrument name:', instrument_name)
Number of instruments: 1 Instrument name: Acoustic Grand Piano
חלץ הערות
for i, note in enumerate(instrument.notes[:10]):
note_name = pretty_midi.note_number_to_name(note.pitch)
duration = note.end - note.start
print(f'{i}: pitch={note.pitch}, note_name={note_name},'
f' duration={duration:.4f}')
0: pitch=56, note_name=G#3, duration=0.0352 1: pitch=44, note_name=G#2, duration=0.0417 2: pitch=68, note_name=G#4, duration=0.0651 3: pitch=80, note_name=G#5, duration=0.1693 4: pitch=78, note_name=F#5, duration=0.1523 5: pitch=76, note_name=E5, duration=0.1120 6: pitch=75, note_name=D#5, duration=0.0612 7: pitch=49, note_name=C#3, duration=0.0378 8: pitch=85, note_name=C#6, duration=0.0352 9: pitch=37, note_name=C#2, duration=0.0417
תשתמש בשלושה משתנים כדי לייצג הערה בעת אימון המודל: pitch
, step
duration
. הגובה הוא האיכות התפיסתית של הצליל כמספר תו MIDI. step
הוא הזמן שחלף מהתו הקודם או מההתחלה של הרצועה. duration
הוא כמה זמן התו יתנגן בשניות והוא ההבדל בין זמני סיום התו וזמני ההתחלה של התו.
חלץ את התווים מקובץ ה-MIDI לדוגמה.
def midi_to_notes(midi_file: str) -> pd.DataFrame:
pm = pretty_midi.PrettyMIDI(midi_file)
instrument = pm.instruments[0]
notes = collections.defaultdict(list)
# Sort the notes by start time
sorted_notes = sorted(instrument.notes, key=lambda note: note.start)
prev_start = sorted_notes[0].start
for note in sorted_notes:
start = note.start
end = note.end
notes['pitch'].append(note.pitch)
notes['start'].append(start)
notes['end'].append(end)
notes['step'].append(start - prev_start)
notes['duration'].append(end - start)
prev_start = start
return pd.DataFrame({name: np.array(value) for name, value in notes.items()})
raw_notes = midi_to_notes(sample_file)
raw_notes.head()
יתכן שיהיה קל יותר לפרש את שמות התווים ולא את גובה הצלילים, כך שתוכל להשתמש בפונקציה שלהלן כדי להמיר מערכי הצליל המספריים לשמות תווים. שם התו מציג את סוג התו, המספר המקרי והאוקטבה (למשל C#4).
get_note_names = np.vectorize(pretty_midi.note_number_to_name)
sample_note_names = get_note_names(raw_notes['pitch'])
sample_note_names[:10]
array(['G#3', 'G#5', 'G#4', 'G#2', 'F#5', 'E5', 'D#5', 'C#3', 'C#6', 'C#5'], dtype='<U3')
כדי לדמיין את היצירה המוזיקלית, התווה את גובה התו, התחל וסיום לאורך הרצועה (כלומר גלגול פסנתר). התחל עם 100 התווים הראשונים
def plot_piano_roll(notes: pd.DataFrame, count: Optional[int] = None):
if count:
title = f'First {count} notes'
else:
title = f'Whole track'
count = len(notes['pitch'])
plt.figure(figsize=(20, 4))
plot_pitch = np.stack([notes['pitch'], notes['pitch']], axis=0)
plot_start_stop = np.stack([notes['start'], notes['end']], axis=0)
plt.plot(
plot_start_stop[:, :count], plot_pitch[:, :count], color="b", marker=".")
plt.xlabel('Time [s]')
plt.ylabel('Pitch')
_ = plt.title(title)
plot_piano_roll(raw_notes, count=100)
צייר את ההערות עבור המסלול כולו.
plot_piano_roll(raw_notes)
בדוק את ההתפלגות של כל משתנה תו.
def plot_distributions(notes: pd.DataFrame, drop_percentile=2.5):
plt.figure(figsize=[15, 5])
plt.subplot(1, 3, 1)
sns.histplot(notes, x="pitch", bins=20)
plt.subplot(1, 3, 2)
max_step = np.percentile(notes['step'], 100 - drop_percentile)
sns.histplot(notes, x="step", bins=np.linspace(0, max_step, 21))
plt.subplot(1, 3, 3)
max_duration = np.percentile(notes['duration'], 100 - drop_percentile)
sns.histplot(notes, x="duration", bins=np.linspace(0, max_duration, 21))
plot_distributions(raw_notes)
צור קובץ MIDI
אתה יכול ליצור קובץ MIDI משלך מתוך רשימה של הערות באמצעות הפונקציה שלהלן.
def notes_to_midi(
notes: pd.DataFrame,
out_file: str,
instrument_name: str,
velocity: int = 100, # note loudness
) -> pretty_midi.PrettyMIDI:
pm = pretty_midi.PrettyMIDI()
instrument = pretty_midi.Instrument(
program=pretty_midi.instrument_name_to_program(
instrument_name))
prev_start = 0
for i, note in notes.iterrows():
start = float(prev_start + note['step'])
end = float(start + note['duration'])
note = pretty_midi.Note(
velocity=velocity,
pitch=int(note['pitch']),
start=start,
end=end,
)
instrument.notes.append(note)
prev_start = start
pm.instruments.append(instrument)
pm.write(out_file)
return pm
example_file = 'example.midi'
example_pm = notes_to_midi(
raw_notes, out_file=example_file, instrument_name=instrument_name)
הפעל את קובץ ה-MIDI שנוצר וראה אם יש הבדל כלשהו.
display_audio(example_pm)
כמו קודם, אתה יכול לכתוב files.download(example_file)
כדי להוריד ולהפעיל את הקובץ הזה.
צור את מערך ההדרכה
צור את מערך האימון על ידי חילוץ הערות מקובצי ה-MIDI. אתה יכול להתחיל על ידי שימוש במספר קטן של קבצים, ולהתנסות מאוחר יותר עם עוד. זה עשוי לקחת כמה דקות.
num_files = 5
all_notes = []
for f in filenames[:num_files]:
notes = midi_to_notes(f)
all_notes.append(notes)
all_notes = pd.concat(all_notes)
n_notes = len(all_notes)
print('Number of notes parsed:', n_notes)
Number of notes parsed: 23163
לאחר מכן, צור מערך נתונים tf.data .מההערות המנתחות.
key_order = ['pitch', 'step', 'duration']
train_notes = np.stack([all_notes[key] for key in key_order], axis=1)
notes_ds = tf.data.Dataset.from_tensor_slices(train_notes)
notes_ds.element_spec
TensorSpec(shape=(3,), dtype=tf.float64, name=None)
אתה תאמן את המודל על קבוצות של רצפים של הערות. כל דוגמה תהיה מורכבת מרצף של הערות כתכונות הקלט, והערה הבאה בתור התווית. בדרך זו, המודל יוכשר לחזות את התו הבא ברצף. אתה יכול למצוא תרשים המסביר את התהליך הזה (ופרטים נוספים) בסיווג טקסט עם RNN .
אתה יכול להשתמש בפונקציית החלון השימושית עם size seq_length
כדי ליצור את התכונות והתוויות בפורמט זה.
def create_sequences(
dataset: tf.data.Dataset,
seq_length: int,
vocab_size = 128,
) -> tf.data.Dataset:
"""Returns TF Dataset of sequence and label examples."""
seq_length = seq_length+1
# Take 1 extra for the labels
windows = dataset.window(seq_length, shift=1, stride=1,
drop_remainder=True)
# `flat_map` flattens the" dataset of datasets" into a dataset of tensors
flatten = lambda x: x.batch(seq_length, drop_remainder=True)
sequences = windows.flat_map(flatten)
# Normalize note pitch
def scale_pitch(x):
x = x/[vocab_size,1.0,1.0]
return x
# Split the labels
def split_labels(sequences):
inputs = sequences[:-1]
labels_dense = sequences[-1]
labels = {key:labels_dense[i] for i,key in enumerate(key_order)}
return scale_pitch(inputs), labels
return sequences.map(split_labels, num_parallel_calls=tf.data.AUTOTUNE)
הגדר את אורך הרצף עבור כל דוגמה. נסה עם אורכים שונים (למשל 50, 100, 150) כדי לראות איזה מהם עובד הכי טוב עבור הנתונים, או השתמש בכוונון היפרפרמטר . גודל אוצר המילים ( vocab_size
) מוגדר ל- 128 המייצג את כל המגרשים הנתמכים על ידי pretty_midi
.
seq_length = 25
vocab_size = 128
seq_ds = create_sequences(notes_ds, seq_length, vocab_size)
seq_ds.element_spec
(TensorSpec(shape=(25, 3), dtype=tf.float64, name=None), {'pitch': TensorSpec(shape=(), dtype=tf.float64, name=None), 'step': TensorSpec(shape=(), dtype=tf.float64, name=None), 'duration': TensorSpec(shape=(), dtype=tf.float64, name=None)})
צורת מערך הנתונים היא (100,1)
, כלומר המודל ייקח 100 הערות כקלט, וילמד לחזות את ההערה הבאה כפלט.
for seq, target in seq_ds.take(1):
print('sequence shape:', seq.shape)
print('sequence elements (first 10):', seq[0: 10])
print()
print('target:', target)
sequence shape: (25, 3) sequence elements (first 10): tf.Tensor( [[0.578125 0. 0.1484375 ] [0.390625 0.00130208 0.0390625 ] [0.3828125 0.03255208 0.07421875] [0.390625 0.08203125 0.14713542] [0.5625 0.14973958 0.07421875] [0.546875 0.09375 0.07421875] [0.5390625 0.12239583 0.04947917] [0.296875 0.01692708 0.31119792] [0.5234375 0.09895833 0.04036458] [0.5078125 0.12369792 0.06380208]], shape=(10, 3), dtype=float64) target: {'pitch': <tf.Tensor: shape=(), dtype=float64, numpy=67.0>, 'step': <tf.Tensor: shape=(), dtype=float64, numpy=0.1171875>, 'duration': <tf.Tensor: shape=(), dtype=float64, numpy=0.04947916666666652>}
צרף את הדוגמאות והגדר את מערך הנתונים לביצועים.
batch_size = 64
buffer_size = n_notes - seq_length # the number of items in the dataset
train_ds = (seq_ds
.shuffle(buffer_size)
.batch(batch_size, drop_remainder=True)
.cache()
.prefetch(tf.data.experimental.AUTOTUNE))
train_ds.element_spec
(TensorSpec(shape=(64, 25, 3), dtype=tf.float64, name=None), {'pitch': TensorSpec(shape=(64,), dtype=tf.float64, name=None), 'step': TensorSpec(shape=(64,), dtype=tf.float64, name=None), 'duration': TensorSpec(shape=(64,), dtype=tf.float64, name=None)})
צור והכשיר את המודל
לדגם יהיו שלוש יציאות, אחת לכל משתנה תו. עבור pitch
duration
, תשתמש בפונקציית אובדן מותאמת אישית המבוססת על שגיאה בריבוע ממוצעת המעודדת את המודל להפיק ערכים לא שליליים.
def mse_with_positive_pressure(y_true: tf.Tensor, y_pred: tf.Tensor):
mse = (y_true - y_pred) ** 2
positive_pressure = 10 * tf.maximum(-y_pred, 0.0)
return tf.reduce_mean(mse + positive_pressure)
input_shape = (seq_length, 3)
learning_rate = 0.005
inputs = tf.keras.Input(input_shape)
x = tf.keras.layers.LSTM(128)(inputs)
outputs = {
'pitch': tf.keras.layers.Dense(128, name='pitch')(x),
'step': tf.keras.layers.Dense(1, name='step')(x),
'duration': tf.keras.layers.Dense(1, name='duration')(x),
}
model = tf.keras.Model(inputs, outputs)
loss = {
'pitch': tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True),
'step': mse_with_positive_pressure,
'duration': mse_with_positive_pressure,
}
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(loss=loss, optimizer=optimizer)
model.summary()
Model: "model" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 25, 3)] 0 [] lstm (LSTM) (None, 128) 67584 ['input_1[0][0]'] duration (Dense) (None, 1) 129 ['lstm[0][0]'] pitch (Dense) (None, 128) 16512 ['lstm[0][0]'] step (Dense) (None, 1) 129 ['lstm[0][0]'] ================================================================================================== Total params: 84,354 Trainable params: 84,354 Non-trainable params: 0 __________________________________________________________________________________________________
בדיקת הפונקציה model.evaluate
, אתה יכול לראות שהפסד pitch
גדול משמעותית מהפסדי step
duration
. שימו לב loss
הוא ההפסד הכולל המחושב על ידי סיכום כל שאר ההפסדים ונשלט כרגע על ידי הפסד pitch
.
losses = model.evaluate(train_ds, return_dict=True)
losses
361/361 [==============================] - 6s 4ms/step - loss: 5.0011 - duration_loss: 0.1213 - pitch_loss: 4.8476 - step_loss: 0.0322 {'loss': 5.001128196716309, 'duration_loss': 0.12134315073490143, 'pitch_loss': 4.847629547119141, 'step_loss': 0.03215572610497475}
דרך אחת לאזן את זה היא להשתמש בארגומנט loss_weights
כדי להדר:
model.compile(
loss=loss,
loss_weights={
'pitch': 0.05,
'step': 1.0,
'duration':1.0,
},
optimizer=optimizer,
)
לאחר מכן, loss
הופך לסכום המשוקלל של ההפסדים האישיים.
model.evaluate(train_ds, return_dict=True)
361/361 [==============================] - 2s 4ms/step - loss: 0.3959 - duration_loss: 0.1213 - pitch_loss: 4.8476 - step_loss: 0.0322 {'loss': 0.39588069915771484, 'duration_loss': 0.12134315073490143, 'pitch_loss': 4.847629547119141, 'step_loss': 0.03215572610497475}
אימון הדגם.
callbacks = [
tf.keras.callbacks.ModelCheckpoint(
filepath='./training_checkpoints/ckpt_{epoch}',
save_weights_only=True),
tf.keras.callbacks.EarlyStopping(
monitor='loss',
patience=5,
verbose=1,
restore_best_weights=True),
]
%%time
epochs = 50
history = model.fit(
train_ds,
epochs=epochs,
callbacks=callbacks,
)
Epoch 1/50 361/361 [==============================] - 4s 5ms/step - loss: 0.3075 - duration_loss: 0.0732 - pitch_loss: 4.0974 - step_loss: 0.0294 Epoch 2/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2950 - duration_loss: 0.0696 - pitch_loss: 3.9526 - step_loss: 0.0278 Epoch 3/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2927 - duration_loss: 0.0682 - pitch_loss: 3.9372 - step_loss: 0.0276 Epoch 4/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2918 - duration_loss: 0.0681 - pitch_loss: 3.9232 - step_loss: 0.0275 Epoch 5/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2874 - duration_loss: 0.0657 - pitch_loss: 3.9079 - step_loss: 0.0264 Epoch 6/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2842 - duration_loss: 0.0653 - pitch_loss: 3.8509 - step_loss: 0.0263 Epoch 7/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2820 - duration_loss: 0.0650 - pitch_loss: 3.8090 - step_loss: 0.0265 Epoch 8/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2806 - duration_loss: 0.0654 - pitch_loss: 3.7903 - step_loss: 0.0257 Epoch 9/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2806 - duration_loss: 0.0651 - pitch_loss: 3.7888 - step_loss: 0.0261 Epoch 10/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2778 - duration_loss: 0.0637 - pitch_loss: 3.7690 - step_loss: 0.0256 Epoch 11/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2762 - duration_loss: 0.0624 - pitch_loss: 3.7704 - step_loss: 0.0253 Epoch 12/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2746 - duration_loss: 0.0616 - pitch_loss: 3.7644 - step_loss: 0.0248 Epoch 13/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2728 - duration_loss: 0.0604 - pitch_loss: 3.7591 - step_loss: 0.0244 Epoch 14/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2710 - duration_loss: 0.0584 - pitch_loss: 3.7573 - step_loss: 0.0247 Epoch 15/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2694 - duration_loss: 0.0574 - pitch_loss: 3.7610 - step_loss: 0.0239 Epoch 16/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2686 - duration_loss: 0.0569 - pitch_loss: 3.7529 - step_loss: 0.0240 Epoch 17/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2695 - duration_loss: 0.0577 - pitch_loss: 3.7486 - step_loss: 0.0243 Epoch 18/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2663 - duration_loss: 0.0560 - pitch_loss: 3.7473 - step_loss: 0.0229 Epoch 19/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2642 - duration_loss: 0.0543 - pitch_loss: 3.7366 - step_loss: 0.0231 Epoch 20/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2691 - duration_loss: 0.0587 - pitch_loss: 3.7421 - step_loss: 0.0233 Epoch 21/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2636 - duration_loss: 0.0547 - pitch_loss: 3.7314 - step_loss: 0.0223 Epoch 22/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2613 - duration_loss: 0.0533 - pitch_loss: 3.7313 - step_loss: 0.0215 Epoch 23/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2595 - duration_loss: 0.0516 - pitch_loss: 3.7219 - step_loss: 0.0218 Epoch 24/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2548 - duration_loss: 0.0493 - pitch_loss: 3.7148 - step_loss: 0.0198 Epoch 25/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2539 - duration_loss: 0.0483 - pitch_loss: 3.7150 - step_loss: 0.0199 Epoch 26/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2526 - duration_loss: 0.0474 - pitch_loss: 3.7138 - step_loss: 0.0196 Epoch 27/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2502 - duration_loss: 0.0460 - pitch_loss: 3.7036 - step_loss: 0.0190 Epoch 28/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2467 - duration_loss: 0.0442 - pitch_loss: 3.6970 - step_loss: 0.0177 Epoch 29/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2458 - duration_loss: 0.0438 - pitch_loss: 3.6938 - step_loss: 0.0172 Epoch 30/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2434 - duration_loss: 0.0418 - pitch_loss: 3.6836 - step_loss: 0.0174 Epoch 31/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2404 - duration_loss: 0.0403 - pitch_loss: 3.6703 - step_loss: 0.0166 Epoch 32/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2421 - duration_loss: 0.0412 - pitch_loss: 3.6833 - step_loss: 0.0168 Epoch 33/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2391 - duration_loss: 0.0399 - pitch_loss: 3.6585 - step_loss: 0.0163 Epoch 34/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2376 - duration_loss: 0.0390 - pitch_loss: 3.6467 - step_loss: 0.0163 Epoch 35/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2403 - duration_loss: 0.0417 - pitch_loss: 3.6448 - step_loss: 0.0164 Epoch 36/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2394 - duration_loss: 0.0417 - pitch_loss: 3.6218 - step_loss: 0.0166 Epoch 37/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2337 - duration_loss: 0.0369 - pitch_loss: 3.6155 - step_loss: 0.0161 Epoch 38/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2320 - duration_loss: 0.0357 - pitch_loss: 3.6080 - step_loss: 0.0158 Epoch 39/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2291 - duration_loss: 0.0353 - pitch_loss: 3.5896 - step_loss: 0.0143 Epoch 40/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2285 - duration_loss: 0.0352 - pitch_loss: 3.5784 - step_loss: 0.0144 Epoch 41/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2276 - duration_loss: 0.0338 - pitch_loss: 3.5928 - step_loss: 0.0142 Epoch 42/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2233 - duration_loss: 0.0316 - pitch_loss: 3.5582 - step_loss: 0.0137 Epoch 43/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2211 - duration_loss: 0.0304 - pitch_loss: 3.5453 - step_loss: 0.0134 Epoch 44/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2206 - duration_loss: 0.0307 - pitch_loss: 3.5396 - step_loss: 0.0129 Epoch 45/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2223 - duration_loss: 0.0322 - pitch_loss: 3.5352 - step_loss: 0.0133 Epoch 46/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2213 - duration_loss: 0.0312 - pitch_loss: 3.5323 - step_loss: 0.0135 Epoch 47/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2240 - duration_loss: 0.0329 - pitch_loss: 3.5405 - step_loss: 0.0142 Epoch 48/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2217 - duration_loss: 0.0322 - pitch_loss: 3.5160 - step_loss: 0.0137 Epoch 49/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2167 - duration_loss: 0.0296 - pitch_loss: 3.4894 - step_loss: 0.0126 Epoch 50/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2142 - duration_loss: 0.0278 - pitch_loss: 3.4757 - step_loss: 0.0126 CPU times: user 2min 16s, sys: 23.9 s, total: 2min 40s Wall time: 1min 41s
plt.plot(history.epoch, history.history['loss'], label='total loss')
plt.show()
צור הערות
כדי להשתמש במודל כדי ליצור הערות, תחילה יהיה עליך לספק רצף התחלתי של הערות. הפונקציה שלהלן יוצרת הערה אחת מרצף של הערות.
עבור גובה הצליל, הוא שואב מדגם מהתפלגות softmax של תווים המיוצרים על ידי המודל, ולא פשוט בוחר את התו עם ההסתברות הגבוהה ביותר. בחירת הפתק עם ההסתברות הגבוהה ביותר תמיד תוביל לרצפים חוזרים ונשנים של הערות שנוצרו.
ניתן להשתמש בפרמטר temperature
כדי לשלוט באקראיות של הערות שנוצרו. תוכל למצוא פרטים נוספים על טמפרטורה ביצירת טקסט עם RNN .
def predict_next_note(
notes: np.ndarray,
keras_model: tf.keras.Model,
temperature: float = 1.0) -> int:
"""Generates a note IDs using a trained sequence model."""
assert temperature > 0
# Add batch dimension
inputs = tf.expand_dims(notes, 0)
predictions = model.predict(inputs)
pitch_logits = predictions['pitch']
step = predictions['step']
duration = predictions['duration']
pitch_logits /= temperature
pitch = tf.random.categorical(pitch_logits, num_samples=1)
pitch = tf.squeeze(pitch, axis=-1)
duration = tf.squeeze(duration, axis=-1)
step = tf.squeeze(step, axis=-1)
# `step` and `duration` values should be non-negative
step = tf.maximum(0, step)
duration = tf.maximum(0, duration)
return int(pitch), float(step), float(duration)
כעת צור כמה הערות. אתה יכול לשחק עם הטמפרטורה ורצף ההתחלה ב- next_notes
ולראות מה קורה.
temperature = 2.0
num_predictions = 120
sample_notes = np.stack([raw_notes[key] for key in key_order], axis=1)
# The initial sequence of notes; pitch is normalized similar to training
# sequences
input_notes = (
sample_notes[:seq_length] / np.array([vocab_size, 1, 1]))
generated_notes = []
prev_start = 0
for _ in range(num_predictions):
pitch, step, duration = predict_next_note(input_notes, model, temperature)
start = prev_start + step
end = start + duration
input_note = (pitch, step, duration)
generated_notes.append((*input_note, start, end))
input_notes = np.delete(input_notes, 0, axis=0)
input_notes = np.append(input_notes, np.expand_dims(input_note, 0), axis=0)
prev_start = start
generated_notes = pd.DataFrame(
generated_notes, columns=(*key_order, 'start', 'end'))
generated_notes.head(10)
out_file = 'output.mid'
out_pm = notes_to_midi(
generated_notes, out_file=out_file, instrument_name=instrument_name)
display_audio(out_pm)
אתה יכול גם להוריד את קובץ האודיו על ידי הוספת שתי השורות למטה:
from google.colab import files
files.download(out_file)
דמיינו את ההערות שנוצרו.
plot_piano_roll(generated_notes)
בדוק את התפלגות pitch
, step
duration
.
plot_distributions(generated_notes)
בעלילות לעיל, תוכלו להבחין בשינוי התפלגות של משתני התווים. מכיוון שקיימת לולאת משוב בין הפלטים והכניסות של המודל, המודל נוטה ליצור רצפים דומים של פלטים כדי להפחית את ההפסד. זה רלוונטי במיוחד step
duration
, אשר יש לו אובדן MSE משתמש. עבור pitch
, אתה יכול להגדיל את האקראיות על ידי הגדלת temperature
ב- predict_next_note
.
הצעדים הבאים
מדריך זה הדגים את המכניקה של שימוש ב-RNN ליצירת רצפים של הערות ממערך נתונים של קבצי MIDI. למידע נוסף, אתה יכול לבקר בדור הטקסט הקשור באופן הדוק עם מדריך RNN , המכיל דיאגרמות והסברים נוספים.
חלופה לשימוש ב-RNN ליצירת מוזיקה היא שימוש ב-GAN. במקום לייצר אודיו, גישה מבוססת GAN יכולה ליצור רצף שלם במקביל. צוות מג'נטה עשה עבודה מרשימה על גישה זו עם GANSynth . אתה יכול גם למצוא הרבה פרויקטי מוזיקה ואמנות נפלאים וקוד קוד פתוח באתר פרויקט מג'נטה .