Учебные пособия по TensorFlow написаны в виде блокнотов Jupyter и запускаются непосредственно в Google Colab — размещенной среде блокнотов, не требующей настройки. В верхней части каждого руководства вы увидите кнопку «Запустить в Google Colab» . Нажмите кнопку, чтобы открыть блокнот и запустить код самостоятельно.
Для начинающих
Лучше всего начать с удобного последовательного API Keras. Создавайте модели, соединяя строительные блоки. После этих туториалов прочтите руководство по Keras .Краткое руководство для начинающих
Это "Привет, мир!" Блокнот показывает Keras Sequential API иmodel.fit
.
Основы Кераса
В этой коллекции блокнотов демонстрируются основные задачи машинного обучения с использованием Keras.Загрузить данные
В этих руководствах используетсяtf.data
для загрузки различных форматов данных и построения конвейеров ввода.
Для экспертов
Функциональные и подклассовые API-интерфейсы Keras предоставляют интерфейс определения при запуске для настройки и расширенных исследований. Создайте свою модель, затем напишите прямой и обратный проходы. Создавайте собственные слои, активации и обучающие циклы.Расширенный быстрый старт
Это "Привет, мир!" Блокнот использует API подклассов Keras и настраиваемый цикл обучения.Настройка
В этой коллекции записных книжек показано, как создавать собственные слои и обучающие циклы в TensorFlow.Распределенное обучение
Распределите обучение модели между несколькими графическими процессорами, несколькими машинами или TPU.
В разделе «Дополнительно» есть много поучительных примеров блокнотов, в том числе « Нейронный машинный перевод », «Трансформеры » и «CycleGAN» .