Everything inside Experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.
tensorflow.RunOptions.Experimental
Métodos Públicos
RunOptions.Experimental.Builder | addRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor do objeto) |
RunOptions.Experimental | construir () |
RunOptions.Experimental | |
RunOptions.Experimental.Builder | claro () |
RunOptions.Experimental.Builder | clearCollectiveGraphKey () If non-zero, declares that this graph is going to use collective ops and must synchronize step_ids with any other graph with this same group_key value (in a distributed computation where tasks run disjoint graphs). |
RunOptions.Experimental.Builder | clearField (campo com.google.protobuf.Descriptors.FieldDescriptor) |
RunOptions.Experimental.Builder | clearOneof (com.google.protobuf.Descriptors.OneofDescriptor umof) |
RunOptions.Experimental.Builder | clearRunHandlerPoolOptions () .tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3; |
RunOptions.Experimental.Builder | clearUseRunHandlerPool () If true, then operations (using the inter-op pool) across all session::run() calls will be centrally scheduled, optimizing for (median and tail) latency. |
RunOptions.Experimental.Builder | clonar () |
longo | getCollectiveGraphKey () If non-zero, declares that this graph is going to use collective ops and must synchronize step_ids with any other graph with this same group_key value (in a distributed computation where tasks run disjoint graphs). |
RunOptions.Experimental | |
final estático com.google.protobuf.Descriptors.Descriptor | |
com.google.protobuf.Descriptors.Descriptor | |
RunOptions.Experimental.RunHandlerPoolOptions | getRunHandlerPoolOptions () .tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3; |
RunOptions.Experimental.RunHandlerPoolOptions.Builder | getRunHandlerPoolOptionsBuilder () .tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3; |
RunOptions.Experimental.RunHandlerPoolOptionsOrBuilder | getRunHandlerPoolOptionsOrBuilder () .tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3; |
booleano | getUseRunHandlerPool () If true, then operations (using the inter-op pool) across all session::run() calls will be centrally scheduled, optimizing for (median and tail) latency. |
booleano | hasRunHandlerPoolOptions () .tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3; |
booleano final | |
RunOptions.Experimental.Builder | mergeFrom (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
RunOptions.Experimental.Builder | mergeFrom (com.google.protobuf.Message outro) |
RunOptions.Experimental.Builder | mergeRunHandlerPoolOptions (valor RunOptions.Experimental.RunHandlerPoolOptions ) .tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3; |
RunOptions.Experimental.Builder final | mesclarUnknownFields (com.google.protobuf.UnknownFieldSet desconhecidoFields) |
RunOptions.Experimental.Builder | setCollectiveGraphKey (valor longo) If non-zero, declares that this graph is going to use collective ops and must synchronize step_ids with any other graph with this same group_key value (in a distributed computation where tasks run disjoint graphs). |
RunOptions.Experimental.Builder | setField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor do objeto) |
RunOptions.Experimental.Builder | setRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, índice int, valor do objeto) |
RunOptions.Experimental.Builder | setRunHandlerPoolOptions (valor RunOptions.Experimental.RunHandlerPoolOptions ) .tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3; |
RunOptions.Experimental.Builder | setRunHandlerPoolOptions ( RunOptions.Experimental.RunHandlerPoolOptions.Builder builderForValue) .tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3; |
RunOptions.Experimental.Builder final | setUnknownFields (com.google.protobuf.UnknownFieldSet desconhecidoFields) |
RunOptions.Experimental.Builder | setUseRunHandlerPool (valor booleano) If true, then operations (using the inter-op pool) across all session::run() calls will be centrally scheduled, optimizing for (median and tail) latency. |
Métodos herdados
Métodos Públicos
public RunOptions.Experimental.Builder addRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor do objeto)
público RunOptions.Experimental.Builder clearCollectiveGraphKey ()
If non-zero, declares that this graph is going to use collective ops and must synchronize step_ids with any other graph with this same group_key value (in a distributed computation where tasks run disjoint graphs).
int64 collective_graph_key = 1;
público RunOptions.Experimental.Builder clearField (campo com.google.protobuf.Descriptors.FieldDescriptor)
público RunOptions.Experimental.Builder clearOneof (com.google.protobuf.Descriptors.OneofDescriptor oneof)
public RunOptions.Experimental.Builder clearRunHandlerPoolOptions ()
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
público RunOptions.Experimental.Builder clearUseRunHandlerPool ()
If true, then operations (using the inter-op pool) across all session::run() calls will be centrally scheduled, optimizing for (median and tail) latency. Consider using this option for CPU-bound workloads like inference.
bool use_run_handler_pool = 2;
público longo getCollectiveGraphKey ()
If non-zero, declares that this graph is going to use collective ops and must synchronize step_ids with any other graph with this same group_key value (in a distributed computation where tasks run disjoint graphs).
int64 collective_graph_key = 1;
final estático público com.google.protobuf.Descriptors.Descriptor getDescriptor ()
público com.google.protobuf.Descriptors.Descriptor getDescriptorForType ()
public RunOptions.Experimental.RunHandlerPoolOptions getRunHandlerPoolOptions ()
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
public RunOptions.Experimental.RunHandlerPoolOptions.Builder getRunHandlerPoolOptionsBuilder ()
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
public RunOptions.Experimental.RunHandlerPoolOptionsOrBuilder getRunHandlerPoolOptionsOrBuilder ()
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
getUseRunHandlerPool booleano público ()
If true, then operations (using the inter-op pool) across all session::run() calls will be centrally scheduled, optimizing for (median and tail) latency. Consider using this option for CPU-bound workloads like inference.
bool use_run_handler_pool = 2;
hasRunHandlerPoolOptions booleano público ()
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
público final booleano isInitialized ()
public RunOptions.Experimental.Builder mergeFrom (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lança
IOException |
---|
public RunOptions.Experimental.Builder mergeRunHandlerPoolOptions (valor RunOptions.Experimental.RunHandlerPoolOptions )
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
público final RunOptions.Experimental.Builder mergeUnknownFields (com.google.protobuf.UnknownFieldSet desconhecidoFields)
público RunOptions.Experimental.Builder setCollectiveGraphKey (valor longo)
If non-zero, declares that this graph is going to use collective ops and must synchronize step_ids with any other graph with this same group_key value (in a distributed computation where tasks run disjoint graphs).
int64 collective_graph_key = 1;
public RunOptions.Experimental.Builder setField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor do objeto)
public RunOptions.Experimental.Builder setRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, índice int, valor do objeto)
público RunOptions.Experimental.Builder setRunHandlerPoolOptions (valor RunOptions.Experimental.RunHandlerPoolOptions )
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
public RunOptions.Experimental.Builder setRunHandlerPoolOptions ( RunOptions.Experimental.RunHandlerPoolOptions.Builder builderForValue)
.tensorflow.RunOptions.Experimental.RunHandlerPoolOptions run_handler_pool_options = 3;
público final RunOptions.Experimental.Builder setUnknownFields (com.google.protobuf.UnknownFieldSet desconhecidoFields)
público RunOptions.Experimental.Builder setUseRunHandlerPool (valor booleano)
If true, then operations (using the inter-op pool) across all session::run() calls will be centrally scheduled, optimizing for (median and tail) latency. Consider using this option for CPU-bound workloads like inference.
bool use_run_handler_pool = 2;