RewriterConfigOrBuilder

interface publique RewriterConfigOrBuilder
Sous-classes indirectes connues

Méthodes publiques

abstrait RewriterConfig.Toggle
getArithmeticOptimization ()
 Arithmetic optimizations (default is ON)
 e.g.
abstrait entier
getArithmeticOptimizationValue ()
 Arithmetic optimizations (default is ON)
 e.g.
abstrait RewriterConfig.Toggle
getAutoMixedPrecision ()
 Optimize data types for CUDA (default is OFF).
abstrait RewriterConfig.Toggle
getAutoMixedPrecisionMkl ()
 Optimize data types for MKL (default is OFF).
abstrait entier
getAutoMixedPrecisionMklValue ()
 Optimize data types for MKL (default is OFF).
abstrait entier
getAutoMixedPrecisionValue ()
 Optimize data types for CUDA (default is OFF).
options AutoParallel abstraites
getAutoParallel ()
 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
abstrait AutoParallelOptionsOrBuilder
getAutoParallelOrBuilder ()
 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
abstrait RewriterConfig.Toggle
getCommonSubgraphElimination ()
 Common subgraph elimination (default is ON)
 e.g.
abstrait entier
getCommonSubgraphEliminationValue ()
 Common subgraph elimination (default is ON)
 e.g.
abstrait RewriterConfig.Toggle
getConstantFolding ()
 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
abstrait entier
getConstantFoldingValue ()
 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
abstrait RewriterConfig.CpuLayout
getCpuLayoutConversion ()
 CPU Conversion settings between NHCW and NCHW.
abstrait entier
getCpuLayoutConversionValue ()
 CPU Conversion settings between NHCW and NCHW.
résumé RewriterConfig.CustomGraphOptimizer
getCustomOptimizers (index int)
 list of CustomGraphOptimizers to apply.
abstrait entier
getCustomOptimizersCount ()
 list of CustomGraphOptimizers to apply.
Liste abstraite < RewriterConfig.CustomGraphOptimizer >
getCustomOptimizersList ()
 list of CustomGraphOptimizers to apply.
résumé RewriterConfig.CustomGraphOptimizerOrBuilder
getCustomOptimizersOrBuilder (index int)
 list of CustomGraphOptimizers to apply.
Liste abstraite <? étend RewriterConfig.CustomGraphOptimizerOrBuilder >
getCustomOptimizersOrBuilderList ()
 list of CustomGraphOptimizers to apply.
abstrait RewriterConfig.Toggle
getDebugStripper ()
 Strips debug-related nodes from the graph (off by default).
abstrait entier
getDebugStripperValue ()
 Strips debug-related nodes from the graph (off by default).
abstrait RewriterConfig.Toggle
getDependencyOptimization ()
 Control dependency optimizations (default is ON).
abstrait entier
getDependencyOptimizationValue ()
 Control dependency optimizations (default is ON).
booléen abstrait
getDisableMetaOptimizer ()
 Disable the entire meta optimizer (off by default).
booléen abstrait
getDisableModelPruning ()
 If true, don't remove unnecessary ops from the graph
 
bool disable_model_pruning = 2;
booléen abstrait
getExperimentalDisableCompressedTensorOptimization ()
 Disable optimizations that assume compressed tensors.
booléen abstrait
getFailOnOptimizerErrors ()
 If true, any optimization pass failing will cause the MetaOptimizer to
 stop with an error.
abstrait RewriterConfig.Toggle
getFunctionOptimization ()
 Function optimizations (default is ON).
abstrait entier
getFunctionOptimizationValue ()
 Function optimizations (default is ON).
abstrait RewriterConfig.Toggle
getImplementationSelector ()
 Enable the swap of kernel implementations based on the device placement
 (default is ON).
abstrait entier
getImplementationSelectorValue ()
 Enable the swap of kernel implementations based on the device placement
 (default is ON).
résumé VerifierConfig
getInterOptimizerVerifierConfig ()
 VerifierConfig specifying the verifiers to be run after every optimizer.
résumé VerifierConfigOrBuilder
getInterOptimizerVerifierConfigOrBuilder ()
 VerifierConfig specifying the verifiers to be run after every optimizer.
abstrait RewriterConfig.Toggle
getLayoutOptimizer ()
 Optimize tensor layouts (default is ON)
 e.g.
abstrait entier
getLayoutOptimizerValue ()
 Optimize tensor layouts (default is ON)
 e.g.
abstrait RewriterConfig.Toggle
getLoopOptimisation ()
 Loop optimizations (default is ON).
abstrait entier
getLoopOptimizationValue ()
 Loop optimizations (default is ON).
abstrait RewriterConfig.MemOptType
getMemoryOptimization ()
 Configures memory optimization passes through the meta-optimizer.
abstrait entier
getMemoryOptimizationValue ()
 Configures memory optimization passes through the meta-optimizer.
chaîne abstraite
getMemoryOptimizerTargetNodeNameScope ()
 A node name scope for node names which are valid outputs of recomputations.
résumé com.google.protobuf.ByteString
getMemoryOptimizerTargetNodeNameScopeBytes ()
 A node name scope for node names which are valid outputs of recomputations.
abstrait RewriterConfig.NumIterationsType
getMetaOptimizerItérations ()
 Controls how many times we run the optimizers in meta optimizer (default
 is once).
abstrait entier
getMetaOptimizerIterationsValue ()
 Controls how many times we run the optimizers in meta optimizer (default
 is once).
abstrait long
getMetaOptimizerTimeoutMs ()
 Maximum number of milliseconds to spend optimizing a single graph before
 timing out.
abstrait entier
getMinGraphNodes ()
 The minimum number of nodes in a graph to optimizer.
chaîne abstraite
getOptimizers (index int)
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
résumé com.google.protobuf.ByteString
getOptimizersBytes (index int)
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
abstrait entier
getOptimizersCount ()
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
Liste abstraite<String>
getOptimizersList ()
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
abstrait RewriterConfig.Toggle
getPinToHostOptimization ()
 Force small ops onto the CPU (default is OFF).
abstrait entier
getPinToHostOptimizationValue ()
 Force small ops onto the CPU (default is OFF).
résumé VerifierConfig
getPostOptimizationVerifierConfig ()
 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
résumé VerifierConfigOrBuilder
getPostOptimizationVerifierConfigOrBuilder ()
 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
abstrait RewriterConfig.Toggle
getRemapping ()
 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
abstrait entier
getRemappingValue ()
 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
abstrait RewriterConfig.Toggle
getScopedAllocatorOptimization ()
 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
abstrait entier
getScopedAllocatorOptimizationValue ()
 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
résumé ScopedAllocatorOptions
getScopedAllocatorOpts ()
.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;
résumé ScopedAllocatorOptionsOrBuilder
getScopedAllocatorOptsOrBuilder ()
.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;
abstrait RewriterConfig.Toggle
getShapeOptimisation ()
 Shape optimizations (default is ON)
 Simplify computations made on shapes.
abstrait entier
getShapeOptimizationValue ()
 Shape optimizations (default is ON)
 Simplify computations made on shapes.
booléen abstrait
hasAutoParallel ()
 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
booléen abstrait
hasInterOptimizerVerifierConfig ()
 VerifierConfig specifying the verifiers to be run after every optimizer.
booléen abstrait
hasPostOptimizationVerifierConfig ()
 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
booléen abstrait
hasScopedAllocatorOpts ()
.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;

Méthodes publiques

résumé public RewriterConfig.Toggle getArithmeticOptimization ()

 Arithmetic optimizations (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle arithmetic_optimization = 7;

public abstract int getArithmeticOptimizationValue ()

 Arithmetic optimizations (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle arithmetic_optimization = 7;

résumé public RewriterConfig.Toggle getAutoMixedPrecision ()

 Optimize data types for CUDA (default is OFF).
 This will try to use float16 on GPU which is faster.
 Note that this can change the numerical stability of the graph and may
 require the use of loss scaling to maintain model convergence.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision = 23;

résumé public RewriterConfig.Toggle getAutoMixedPrecisionMkl ()

 Optimize data types for MKL (default is OFF).
 This will try to use bfloat16 on CPUs, which is faster.
 Note that this can change the numerical stability of the graph.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision_mkl = 25;

public abstrait int getAutoMixedPrecisionMklValue ()

 Optimize data types for MKL (default is OFF).
 This will try to use bfloat16 on CPUs, which is faster.
 Note that this can change the numerical stability of the graph.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision_mkl = 25;

public abstrait int getAutoMixedPrecisionValue ()

 Optimize data types for CUDA (default is OFF).
 This will try to use float16 on GPU which is faster.
 Note that this can change the numerical stability of the graph and may
 require the use of loss scaling to maintain model convergence.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision = 23;

résumé public AutoParallelOptions getAutoParallel ()

 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
 
.tensorflow.AutoParallelOptions auto_parallel = 5;

public abstrait AutoParallelOptionsOrBuilder getAutoParallelOrBuilder ()

 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
 
.tensorflow.AutoParallelOptions auto_parallel = 5;

résumé public RewriterConfig.Toggle getCommonSubgraphElimination ()

 Common subgraph elimination (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle common_subgraph_elimination = 24;

public abstract int getCommonSubgraphEliminationValue ()

 Common subgraph elimination (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle common_subgraph_elimination = 24;

résumé public RewriterConfig.Toggle getConstantFolding ()

 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
 
.tensorflow.RewriterConfig.Toggle constant_folding = 3;

public abstrait int getConstantFoldingValue ()

 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
 
.tensorflow.RewriterConfig.Toggle constant_folding = 3;

résumé public RewriterConfig.CpuLayout getCpuLayoutConversion ()

 CPU Conversion settings between NHCW and NCHW.
 
.tensorflow.RewriterConfig.CpuLayout cpu_layout_conversion = 50;

public abstrait int getCpuLayoutConversionValue ()

 CPU Conversion settings between NHCW and NCHW.
 
.tensorflow.RewriterConfig.CpuLayout cpu_layout_conversion = 50;

résumé public RewriterConfig.CustomGraphOptimizer getCustomOptimizers (index int)

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

public abstrait int getCustomOptimizersCount ()

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

Liste abstraite publique < RewriterConfig.CustomGraphOptimizer > getCustomOptimizersList ()

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

résumé public RewriterConfig.CustomGraphOptimizerOrBuilder getCustomOptimizersOrBuilder (index int)

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

Liste des résumés publics<? étend RewriterConfig.CustomGraphOptimizerOrBuilder > getCustomOptimizersOrBuilderList ()

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

public abstrait RewriterConfig.Toggle getDebugStripper ()

 Strips debug-related nodes from the graph (off by default).
 
.tensorflow.RewriterConfig.Toggle debug_stripper = 11;

public abstrait int getDebugStripperValue ()

 Strips debug-related nodes from the graph (off by default).
 
.tensorflow.RewriterConfig.Toggle debug_stripper = 11;

résumé public RewriterConfig.Toggle getDependencyOptimization ()

 Control dependency optimizations (default is ON).
 Remove redundant control dependencies, which may enable other optimization.
 
.tensorflow.RewriterConfig.Toggle dependency_optimization = 8;

public abstract int getDependencyOptimizationValue ()

 Control dependency optimizations (default is ON).
 Remove redundant control dependencies, which may enable other optimization.
 
.tensorflow.RewriterConfig.Toggle dependency_optimization = 8;

public abstrait booléen getDisableMetaOptimizer ()

 Disable the entire meta optimizer (off by default).
 
bool disable_meta_optimizer = 19;

public abstrait booléen getDisableModelPruning ()

 If true, don't remove unnecessary ops from the graph
 
bool disable_model_pruning = 2;

public abstrait booléen getExperimentalDisableCompressedTensorOptimization ()

 Disable optimizations that assume compressed tensors. Note that this flag
 is experimental and may be removed in the future.
 
bool experimental_disable_compressed_tensor_optimization = 26;

public abstrait booléen getFailOnOptimizerErrors ()

 If true, any optimization pass failing will cause the MetaOptimizer to
 stop with an error. By default - or when set to false, failing passes are
 skipped silently.
 
bool fail_on_optimizer_errors = 21;

résumé public RewriterConfig.Toggle getFunctionOptimization ()

 Function optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle function_optimization = 10;

public abstract int getFunctionOptimizationValue ()

 Function optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle function_optimization = 10;

résumé public RewriterConfig.Toggle getImplementationSelector ()

 Enable the swap of kernel implementations based on the device placement
 (default is ON).
 
.tensorflow.RewriterConfig.Toggle implementation_selector = 22;

public abstract int getImplementationSelectorValue ()

 Enable the swap of kernel implementations based on the device placement
 (default is ON).
 
.tensorflow.RewriterConfig.Toggle implementation_selector = 22;

résumé public VerifierConfig getInterOptimizerVerifierConfig ()

 VerifierConfig specifying the verifiers to be run after every optimizer.
 
.tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;

résumé public VerifierConfigOrBuilder getInterOptimizerVerifierConfigOrBuilder ()

 VerifierConfig specifying the verifiers to be run after every optimizer.
 
.tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;

résumé public RewriterConfig.Toggle getLayoutOptimizer ()

 Optimize tensor layouts (default is ON)
 e.g. This will try to use NCHW layout on GPU which is faster.
 
.tensorflow.RewriterConfig.Toggle layout_optimizer = 1;

public abstrait int getLayoutOptimizerValue ()

 Optimize tensor layouts (default is ON)
 e.g. This will try to use NCHW layout on GPU which is faster.
 
.tensorflow.RewriterConfig.Toggle layout_optimizer = 1;

résumé public RewriterConfig.Toggle getLoopOptimization ()

 Loop optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle loop_optimization = 9;

public abstrait int getLoopOptimizationValue ()

 Loop optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle loop_optimization = 9;

résumé public RewriterConfig.MemOptType getMemoryOptimization ()

 Configures memory optimization passes through the meta-optimizer. Has no
 effect on manually requested memory optimization passes in the optimizers
 field.
 
.tensorflow.RewriterConfig.MemOptType memory_optimization = 4;

public abstrait int getMemoryOptimizationValue ()

 Configures memory optimization passes through the meta-optimizer. Has no
 effect on manually requested memory optimization passes in the optimizers
 field.
 
.tensorflow.RewriterConfig.MemOptType memory_optimization = 4;

chaîne abstraite publique getMemoryOptimizerTargetNodeNameScope ()

 A node name scope for node names which are valid outputs of recomputations.
 Inputs to nodes that match this scope may be recomputed (subject either to
 manual annotation of those input nodes or to manual annotation and
 heuristics depending on memory_optimization), but the nodes themselves will
 not be recomputed. This matches any sub-scopes as well, meaning the scope
 can appear not just as a top-level scope. For example, if the value is
 "gradients/", the default, it will match node name "gradients/foo",
 "foo/gradients/bar", but not "foo_gradients/"
 
string memory_optimizer_target_node_name_scope = 6;

résumé public com.google.protobuf.ByteString getMemoryOptimizerTargetNodeNameScopeBytes ()

 A node name scope for node names which are valid outputs of recomputations.
 Inputs to nodes that match this scope may be recomputed (subject either to
 manual annotation of those input nodes or to manual annotation and
 heuristics depending on memory_optimization), but the nodes themselves will
 not be recomputed. This matches any sub-scopes as well, meaning the scope
 can appear not just as a top-level scope. For example, if the value is
 "gradients/", the default, it will match node name "gradients/foo",
 "foo/gradients/bar", but not "foo_gradients/"
 
string memory_optimizer_target_node_name_scope = 6;

résumé public RewriterConfig.NumIterationsType getMetaOptimizerIterations ()

 Controls how many times we run the optimizers in meta optimizer (default
 is once).
 
.tensorflow.RewriterConfig.NumIterationsType meta_optimizer_iterations = 12;

public abstrait int getMetaOptimizerIterationsValue ()

 Controls how many times we run the optimizers in meta optimizer (default
 is once).
 
.tensorflow.RewriterConfig.NumIterationsType meta_optimizer_iterations = 12;

public abstrait long getMetaOptimizerTimeoutMs ()

 Maximum number of milliseconds to spend optimizing a single graph before
 timing out. If equal to 0 the system picks a default (currently 5 minutes).
 If less than 0 the optimizer will never time out.
 
int64 meta_optimizer_timeout_ms = 20;

public abstrait int getMinGraphNodes ()

 The minimum number of nodes in a graph to optimizer. For smaller graphs,
 optimization is skipped.
 0 means the system picks an appropriate number.
 < 0 means do not skip optimization.
 
int32 min_graph_nodes = 17;

chaîne abstraite publique getOptimizers (index int)

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

résumé public com.google.protobuf.ByteString getOptimizersBytes (index int)

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

public abstrait int getOptimizersCount ()

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

liste abstraite publique<String> getOptimizersList ()

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

résumé public RewriterConfig.Toggle getPinToHostOptimization ()

 Force small ops onto the CPU (default is OFF).
 
.tensorflow.RewriterConfig.Toggle pin_to_host_optimization = 18;

public abstrait int getPinToHostOptimizationValue ()

 Force small ops onto the CPU (default is OFF).
 
.tensorflow.RewriterConfig.Toggle pin_to_host_optimization = 18;

résumé public VerifierConfig getPostOptimizationVerifierConfig ()

 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
 
.tensorflow.VerifierConfig post_optimization_verifier_config = 301;

résumé public VerifierConfigOrBuilder getPostOptimizationVerifierConfigOrBuilder ()

 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
 
.tensorflow.VerifierConfig post_optimization_verifier_config = 301;

public abstrait RewriterConfig.Toggle getRemapping ()

 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
 
.tensorflow.RewriterConfig.Toggle remapping = 14;

public abstrait int getRemappingValue ()

 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
 
.tensorflow.RewriterConfig.Toggle remapping = 14;

résumé public RewriterConfig.Toggle getScopedAllocatorOptimization ()

 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
 
.tensorflow.RewriterConfig.Toggle scoped_allocator_optimization = 15;

public abstrait int getScopedAllocatorOptimizationValue ()

 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
 
.tensorflow.RewriterConfig.Toggle scoped_allocator_optimization = 15;

résumé public ScopedAllocatorOptions getScopedAllocatorOpts ()

.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;

résumé public ScopedAllocatorOptionsOrBuilder getScopedAllocatorOptsOrBuilder ()

.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;

résumé public RewriterConfig.Toggle getShapeOptimization ()

 Shape optimizations (default is ON)
 Simplify computations made on shapes.
 
.tensorflow.RewriterConfig.Toggle shape_optimization = 13;

public abstrait int getShapeOptimizationValue ()

 Shape optimizations (default is ON)
 Simplify computations made on shapes.
 
.tensorflow.RewriterConfig.Toggle shape_optimization = 13;

public abstrait booléen hasAutoParallel ()

 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
 
.tensorflow.AutoParallelOptions auto_parallel = 5;

public abstrait booléen hasInterOptimizerVerifierConfig ()

 VerifierConfig specifying the verifiers to be run after every optimizer.
 
.tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;

public abstrait booléen hasPostOptimizationVerifierConfig ()

 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
 
.tensorflow.VerifierConfig post_optimization_verifier_config = 301;

public abstrait booléen hasScopedAllocatorOpts ()

.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;