GPUOptions

공개 최종 클래스 GPUOptions

Protobuf 유형 tensorflow.GPUOptions

중첩 클래스

수업 GPU옵션.빌더 Protobuf 유형 tensorflow.GPUOptions
수업 GPUOptions.Experimental Protobuf 유형 tensorflow.GPUOptions.Experimental
인터페이스 GPUOptions.ExperimentalOrBuilder

상수

정수 ALLOCATOR_TYPE_FIELD_NUMBER
정수 ALLOW_GROWTH_FIELD_NUMBER
정수 DEFERRED_DELETION_BYTES_FIELD_NUMBER
정수 EXPERIMENTAL_FIELD_NUMBER
정수 FORCE_GPU_COMPATIBLE_FIELD_NUMBER
정수 PER_PROCESS_GPU_MEMORY_FRACTION_FIELD_NUMBER
정수 POLLING_ACTIVE_DELAY_USECS_FIELD_NUMBER
정수 POLLING_INACTIVE_DELAY_MSECS_FIELD_NUMBER
정수 VISIBLE_DEVICE_LIST_FIELD_NUMBER

공개 방법

부울
같음 (객체 객체)
getAllocatorType ()
 The type of GPU allocation strategy to use.
com.google.protobuf.ByteString
getAllocatorTypeBytes ()
 The type of GPU allocation strategy to use.
부울
getAllowGrowth ()
 If true, the allocator does not pre-allocate the entire specified
 GPU memory region, instead starting small and growing as needed.
정적 GPU 옵션
GPU옵션
getDeferredDeletionBytes ()
 Delay deletion of up to this many bytes to reduce the number of
 interactions with gpu driver code.
최종 정적 com.google.protobuf.Descriptors.Descriptor
GPUOptions.Experimental
getExperimental ()
 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
GPUOptions.ExperimentalOrBuilder
getExperimentalOrBuilder ()
 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
부울
getForceGpu호환 ()
 Force all tensors to be gpu_compatible.
더블
getPerProcessGpuMemoryFraction ()
 Fraction of the available GPU memory to allocate for each process.
정수
getPollingActiveDelayUsecs ()
 In the event polling loop sleep this many microseconds between
 PollEvents calls, when the queue is not empty.
정수
getPollingInactiveDelayMsecs ()
 This field is deprecated and ignored.
정수
최종 com.google.protobuf.UnknownFieldSet
getVisibleDeviceList ()
 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.
com.google.protobuf.ByteString
getVisibleDeviceListBytes ()
 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.
부울
실험적 ()
 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
정수
최종 부울
정적 GPUOptions.Builder
newBuilder ( GPUOptions 프로토타입)
정적 GPUOptions.Builder
GPUOptions.Builder
정적 GPU 옵션
parsDelimitedFrom (InputStream 입력)
정적 GPU옵션
parseDelimitedFrom (InputStream 입력, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
정적 GPU 옵션
parsFrom (ByteBuffer 데이터)
정적 GPU 옵션
ParseFrom (com.google.protobuf.CodedInputStream 입력, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
정적 GPU 옵션
ParseFrom (ByteBuffer 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
정적 GPU 옵션
ParseFrom (com.google.protobuf.CodedInputStream 입력)
정적 GPU 옵션
parseFrom (byte[] 데이터, com.google.protobuf.ExtensionRegistryLite 확장Registry)
정적 GPU옵션
ParseFrom (com.google.protobuf.ByteString 데이터)
정적 GPU 옵션
ParseFrom (InputStream 입력, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
정적 GPU 옵션
ParseFrom (com.google.protobuf.ByteString 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
공전
파서 ()
GPUOptions.Builder
무효의
writeTo (com.google.protobuf.CodedOutputStream 출력)

상속된 메서드

상수

공개 정적 최종 int ALLOCATOR_TYPE_FIELD_NUMBER

상수값: 2

공개 정적 최종 int ALLOW_GROWTH_FIELD_NUMBER

상수값: 4

공개 정적 최종 int DEFERRED_DELETION_BYTES_FIELD_NUMBER

상수값: 3

공개 정적 최종 int EXPERIMENTAL_FIELD_NUMBER

상수값: 9

공개 정적 최종 int FORCE_GPU_COMPATIBLE_FIELD_NUMBER

상수값: 8

공개 정적 최종 int PER_PROCESS_GPU_MEMORY_FRACTION_FIELD_NUMBER

상수값: 1

공개 정적 최종 int POLLING_ACTIVE_DELAY_USECS_FIELD_NUMBER

상수값: 6

공개 정적 최종 int POLLING_INACTIVE_DELAY_MSECS_FIELD_NUMBER

상수값: 7

공개 정적 최종 int VISIBLE_DEVICE_LIST_FIELD_NUMBER

상수값: 5

공개 방법

공개 부울은 (객체 obj) 와 같습니다 .

공개 문자열 getAllocatorType ()

 The type of GPU allocation strategy to use.
 Allowed values:
 "": The empty string (default) uses a system-chosen default
     which may change over time.
 "BFC": A "Best-fit with coalescing" algorithm, simplified from a
        version of dlmalloc.
 
string allocator_type = 2;

공개 com.google.protobuf.ByteString getAllocatorTypeBytes ()

 The type of GPU allocation strategy to use.
 Allowed values:
 "": The empty string (default) uses a system-chosen default
     which may change over time.
 "BFC": A "Best-fit with coalescing" algorithm, simplified from a
        version of dlmalloc.
 
string allocator_type = 2;

공개 부울 getAllowGrowth ()

 If true, the allocator does not pre-allocate the entire specified
 GPU memory region, instead starting small and growing as needed.
 
bool allow_growth = 4;

공개 정적 GPUOptions getDefaultInstance ()

공개 GPUOptions getDefaultInstanceForType ()

공개 긴 getDeferredDeletionBytes ()

 Delay deletion of up to this many bytes to reduce the number of
 interactions with gpu driver code.  If 0, the system chooses
 a reasonable default (several MBs).
 
int64 deferred_deletion_bytes = 3;

공개 정적 최종 com.google.protobuf.Descriptors.Descriptor getDescriptor ()

공개 GPUOptions.Experimental getExperimental ()

 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
.tensorflow.GPUOptions.Experimental experimental = 9;

공개 GPUOptions.ExperimentalOrBuilder getExperimentalOrBuilder ()

 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
.tensorflow.GPUOptions.Experimental experimental = 9;

공개 부울 getForceGpuCompatible ()

 Force all tensors to be gpu_compatible. On a GPU-enabled TensorFlow,
 enabling this option forces all CPU tensors to be allocated with Cuda
 pinned memory. Normally, TensorFlow will infer which tensors should be
 allocated as the pinned memory. But in case where the inference is
 incomplete, this option can significantly speed up the cross-device memory
 copy performance as long as it fits the memory.
 Note that this option is not something that should be
 enabled by default for unknown or very large models, since all Cuda pinned
 memory is unpageable, having too much pinned memory might negatively impact
 the overall host system performance.
 
bool force_gpu_compatible = 8;

공공의 getParserForType ()

공개 이중 getPerProcessGpuMemoryFraction ()

 Fraction of the available GPU memory to allocate for each process.
 1 means to allocate all of the GPU memory, 0.5 means the process
 allocates up to ~50% of the available GPU memory.
 GPU memory is pre-allocated unless the allow_growth option is enabled.
 If greater than 1.0, uses CUDA unified memory to potentially oversubscribe
 the amount of memory available on the GPU device by using host memory as a
 swap space. Accessing memory not available on the device will be
 significantly slower as that would require memory transfer between the host
 and the device. Options to reduce the memory requirement should be
 considered before enabling this option as this may come with a negative
 performance impact. Oversubscription using the unified memory requires
 Pascal class or newer GPUs and it is currently only supported on the Linux
 operating system. See
 https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements
 for the detailed requirements.
 
double per_process_gpu_memory_fraction = 1;

공개 int getPollingActiveDelayUsecs ()

 In the event polling loop sleep this many microseconds between
 PollEvents calls, when the queue is not empty.  If value is not
 set or set to 0, gets set to a non-zero default.
 
int32 polling_active_delay_usecs = 6;

공개 int getPollingInactiveDelayMsecs ()

 This field is deprecated and ignored.
 
int32 polling_inactive_delay_msecs = 7;

공개 int getSerializedSize ()

공개 최종 com.google.protobuf.UnknownFieldSet getUnknownFields ()

공개 문자열 getVisibleDeviceList ()

 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.  For example, if TensorFlow
 can see 8 GPU devices in the process, and one wanted to map
 visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1",
 then one would specify this field as "5,3".  This field is similar in
 spirit to the CUDA_VISIBLE_DEVICES environment variable, except
 it applies to the visible GPU devices in the process.
 NOTE:
 1. The GPU driver provides the process with the visible GPUs
    in an order which is not guaranteed to have any correlation to
    the *physical* GPU id in the machine.  This field is used for
    remapping "visible" to "virtual", which means this operates only
    after the process starts.  Users are required to use vendor
    specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the
    physical to visible device mapping prior to invoking TensorFlow.
 2. In the code, the ids in this list are also called "platform GPU id"s,
    and the 'virtual' ids of GPU devices (i.e. the ids in the device
    name "/device:GPU:<id>") are also called "TF GPU id"s. Please
    refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h
    for more information.
 
string visible_device_list = 5;

공개 com.google.protobuf.ByteString getVisibleDeviceListBytes ()

 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.  For example, if TensorFlow
 can see 8 GPU devices in the process, and one wanted to map
 visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1",
 then one would specify this field as "5,3".  This field is similar in
 spirit to the CUDA_VISIBLE_DEVICES environment variable, except
 it applies to the visible GPU devices in the process.
 NOTE:
 1. The GPU driver provides the process with the visible GPUs
    in an order which is not guaranteed to have any correlation to
    the *physical* GPU id in the machine.  This field is used for
    remapping "visible" to "virtual", which means this operates only
    after the process starts.  Users are required to use vendor
    specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the
    physical to visible device mapping prior to invoking TensorFlow.
 2. In the code, the ids in this list are also called "platform GPU id"s,
    and the 'virtual' ids of GPU devices (i.e. the ids in the device
    name "/device:GPU:<id>") are also called "TF GPU id"s. Please
    refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h
    for more information.
 
string visible_device_list = 5;

공개 부울 hasExperimental ()

 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
.tensorflow.GPUOptions.Experimental experimental = 9;

공개 int hashCode ()

공개 최종 부울 isInitialized ()

공개 정적 GPUOptions.Builder newBuilder ( GPUOptions 프로토타입)

공개 정적 GPUOptions.Builder newBuilder ()

공개 GPUOptions.Builder newBuilderForType ()

공개 정적 GPUOptions parseDelimitedFrom (InputStream 입력)

던지기
IO예외

공개 정적 GPUOptionsparseDelimitedFrom ( InputStream 입력, com.google.protobuf.ExtensionRegistryLite 확장Registry)

던지기
IO예외

공개 정적 GPUOptions 구문 분석 (ByteBuffer 데이터)

던지기
잘못된프로토콜버퍼예외

공개 정적 GPUOptionsparseFrom ( com.google.protobuf.CodedInputStream 입력, com.google.protobuf.ExtensionRegistryLite 확장Registry)

던지기
IO예외

공개 정적 GPUOptions ParseFrom (ByteBuffer 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)

던지기
잘못된프로토콜버퍼예외

공개 정적 GPUOptions 구문 분석 (com.google.protobuf.CodedInputStream 입력)

던지기
IO예외

공개 정적 GPUOptions 구문 분석 (byte[] 데이터, com.google.protobuf.ExtensionRegistryLite 확장Registry)

던지기
잘못된프로토콜버퍼예외

공개 정적 GPUOptions 구문 분석 (com.google.protobuf.ByteString 데이터)

던지기
잘못된프로토콜버퍼예외

공개 정적 GPUOptionsparseFrom ( InputStream 입력, com.google.protobuf.ExtensionRegistryLite 확장Registry)

던지기
IO예외

공개 정적 GPUOptionsparseFrom ( com.google.protobuf.ByteString 데이터, com.google.protobuf.ExtensionRegistryLite 확장Registry)

던지기
잘못된프로토콜버퍼예외

공개 정적 파서 ()

공개 GPUOptions.Builder toBuilder ()

공개 무효 writeTo (com.google.protobuf.CodedOutputStream 출력)

던지기
IO예외