публичный статический конечный класс GPUOptions.Experimental
Тип protobuf tensorflow.GPUOptions.Experimental
Вложенные классы
сорт | GPUOptions.Experimental.Builder | Тип protobuf tensorflow.GPUOptions.Experimental | |
сорт | GPUOptions.Experimental.VirtualDevices | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
интерфейс | GPUOptions.Experimental.VirtualDevicesOrBuilder |
Константы
интервал | COLLECTIVE_RING_ORDER_FIELD_NUMBER | |
интервал | KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER | |
интервал | KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER | |
интервал | KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER | |
интервал | NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER | |
интервал | TIMESTAMPED_ALLOCATOR_FIELD_NUMBER | |
интервал | USE_UNIFIED_MEMORY_FIELD_NUMBER | |
интервал | VIRTUAL_DEVICES_FIELD_NUMBER |
Публичные методы
логическое значение | равно (Объект obj) |
Нить | getCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | getCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
статический GPUOptions.Экспериментальный | |
GPUOptions.Экспериментальный | |
окончательный статический com.google.protobuf.Descriptors.Descriptor | |
интервал | getKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
интервал | getKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
интервал | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
интервал | getNumDevToDevCopyStreams () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
интервал | |
логическое значение | getTimestampedAllocator () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
окончательный com.google.protobuf.UnknownFieldSet | |
логическое значение | getUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
GPUOptions.Experimental.VirtualDevices | getVirtualDevices (индекс int) The multi virtual device settings. |
интервал | getVirtualDevicesCount () The multi virtual device settings. |
Список < GPUOptions.Experimental.VirtualDevices > | getVirtualDevicesList () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (индекс int) The multi virtual device settings. |
Список<? расширяет GPUOptions.Experimental.VirtualDevicesOrBuilder > | getVirtualDevicesOrBuilderList () The multi virtual device settings. |
интервал | хэш-код () |
последнее логическое значение | |
статический GPUOptions.Experimental.Builder | newBuilder ( GPUOptions.Экспериментальный прототип) |
статический GPUOptions.Experimental.Builder | |
GPUOptions.Experimental.Builder | |
статический GPUOptions.Экспериментальный | parseDelimitedFrom (входной поток) |
статический GPUOptions.Экспериментальный | parseDelimitedFrom (ввод InputStream, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
статический GPUOptions.Экспериментальный | parseFrom (данные ByteBuffer) |
статический GPUOptions.Экспериментальный | parseFrom (ввод com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
статический GPUOptions.Экспериментальный | parseFrom (данные ByteBuffer, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
статический GPUOptions.Экспериментальный | parseFrom (вход com.google.protobuf.CodedInputStream) |
статический GPUOptions.Экспериментальный | parseFrom (данные byte[], com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
статический GPUOptions.Экспериментальный | parseFrom (данные com.google.protobuf.ByteString) |
статический GPUOptions.Экспериментальный | parseFrom (ввод InputStream, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
статический GPUOptions.Экспериментальный | parseFrom (данные com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
статический | парсер () |
GPUOptions.Experimental.Builder | toBuilder () |
пустота | writeTo (вывод com.google.protobuf.CodedOutputStream) |
Унаследованные методы
Константы
общедоступный статический окончательный int COLLECTIVE_RING_ORDER_FIELD_NUMBER
Постоянное значение: 4
общедоступный статический окончательный int KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
Постоянное значение: 8
общедоступный статический окончательный int KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
Постоянное значение: 7
общедоступный статический окончательный int KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
Постоянное значение: 9
общедоступный статический окончательный int NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
Постоянное значение: 3
общедоступный статический финал int TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
Постоянное значение: 5
общедоступный статический окончательный int USE_UNIFIED_MEMORY_FIELD_NUMBER
Постоянное значение: 2
общедоступный статический финал int VIRTUAL_DEVICES_FIELD_NUMBER
Постоянное значение: 1
Публичные методы
общедоступное логическое значение равно (Object obj)
публичная строка getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public com.google.protobuf.ByteString getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
общедоступный статический окончательный com.google.protobuf.Descriptors.Descriptor getDescriptor ()
public int getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
public int getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
public int getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
public int getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
общественный getParserForType ()
public int getSerializedSize ()
общедоступное логическое значение getTimestampedAllocator ()
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
публичный финал com.google.protobuf.UnknownFieldSet getUnknownFields ()
общедоступное логическое значение getUseUnifiedMemory ()
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
public GPUOptions.Experimental.VirtualDevices getVirtualDevices (индекс int)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public int getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
общедоступный список < GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public GPUOptions.Experimental.VirtualDevicesOrBuilder getVirtualDevicesOrBuilder (индекс int)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
общедоступный список<? расширяет GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public int hashCode ()
публичное финальное логическое значение isInitialized ()
общедоступный статический GPUOptions.Experimental.Builder newBuilder (прототип GPUOptions.Experimental )
общедоступный статический GPUOptions.Experimental parseDelimitedFrom (вход InputStream)
Броски
Исключение IO |
---|
общедоступный статический GPUOptions.Experimental parseDelimitedFrom (входной поток InputStream, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
Броски
Исключение IO |
---|
общедоступный статический GPUOptions.Experimental parseFrom (данные ByteBuffer)
Броски
Инвалидпротоколбуфферисключение |
---|
общедоступный статический GPUOptions.Experimental parseFrom (вход com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
Броски
Исключение IO |
---|
public static GPUOptions.Experimental parseFrom (данные ByteBuffer, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
Броски
Инвалидпротоколбуфферисключение |
---|
общедоступный статический GPUOptions.Experimental parseFrom (вход com.google.protobuf.CodedInputStream)
Броски
Исключение IO |
---|
общедоступный статический GPUOptions.Experimental parseFrom (данные byte[], com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
Броски
Инвалидпротоколбуфферисключение |
---|
общедоступный статический GPUOptions.Experimental parseFrom (данные com.google.protobuf.ByteString)
Броски
Инвалидпротоколбуфферисключение |
---|
общедоступный статический GPUOptions.Experimental parseFrom (ввод InputStream, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
Броски
Исключение IO |
---|
общедоступный статический GPUOptions.Experimental parseFrom (данные com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
Броски
Инвалидпротоколбуфферисключение |
---|
общественный статический парсер ()
public void writeTo (вывод com.google.protobuf.CodedOutputStream)
Броски
Исключение IO |
---|