공개 정적 최종 클래스 GPUOptions.Experimental
Protobuf 유형 tensorflow.GPUOptions.Experimental
중첩 클래스
수업 | GPUOptions.Experimental.Builder | Protobuf 유형 tensorflow.GPUOptions.Experimental | |
수업 | GPUOptions.Experimental.VirtualDevices | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
인터페이스 | GPUOptions.Experimental.VirtualDevicesOrBuilder |
상수
공개 방법
부울 | 같음 (객체 객체) |
끈 | getCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | getCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
정적 GPUOptions.Experimental | |
GPUOptions.Experimental | |
최종 정적 com.google.protobuf.Descriptors.Descriptor | |
정수 | getKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
정수 | getKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
정수 | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
정수 | getNumDevToDevCopyStreams () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
정수 | |
부울 | getTimestampedAllocator () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
최종 com.google.protobuf.UnknownFieldSet | |
부울 | getUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
GPUOptions.Experimental.VirtualDevices | getVirtualDevices (정수 인덱스) The multi virtual device settings. |
정수 | getVirtualDevicesCount () The multi virtual device settings. |
목록< GPUOptions.Experimental.VirtualDevices > | getVirtualDevicesList () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (정수 인덱스) The multi virtual device settings. |
목록<? GPUOptions.Experimental.VirtualDevicesOrBuilder 확장 > | getVirtualDevicesOrBuilderList () The multi virtual device settings. |
정수 | 해시코드 () |
최종 부울 | 초기화됨 () |
정적 GPUOptions.Experimental.Builder | newBuilder ( GPUOptions.Experimental 프로토타입) |
정적 GPUOptions.Experimental.Builder | 새로운 빌더 () |
GPUOptions.Experimental.Builder | |
정적 GPUOptions.Experimental | parsDelimitedFrom (InputStream 입력) |
정적 GPUOptions.Experimental | parseDelimitedFrom (InputStream 입력, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
정적 GPUOptions.Experimental | parsFrom (ByteBuffer 데이터) |
정적 GPUOptions.Experimental | ParseFrom (com.google.protobuf.CodedInputStream 입력, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
정적 GPUOptions.Experimental | ParseFrom (ByteBuffer 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
정적 GPUOptions.Experimental | ParseFrom (com.google.protobuf.CodedInputStream 입력) |
정적 GPUOptions.Experimental | parseFrom (byte[] 데이터, com.google.protobuf.ExtensionRegistryLite 확장Registry) |
정적 GPUOptions.Experimental | ParseFrom (com.google.protobuf.ByteString 데이터) |
정적 GPUOptions.Experimental | ParseFrom (InputStream 입력, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
정적 GPUOptions.Experimental | ParseFrom (com.google.protobuf.ByteString 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
공전 | 파서 () |
GPUOptions.Experimental.Builder | toBuilder () |
무효의 | writeTo (com.google.protobuf.CodedOutputStream 출력) |
상속된 메서드
상수
공개 정적 최종 int COLLECTIVE_RING_ORDER_FIELD_NUMBER
상수값: 4
공개 정적 최종 int KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
상수값: 8
공개 정적 최종 int KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
상수값: 7
공개 정적 최종 int KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
상수값: 9
공개 정적 최종 정수 NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
상수값: 3
공개 정적 최종 int TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
상수값: 5
공개 정적 최종 int USE_UNIFIED_MEMORY_FIELD_NUMBER
상수값: 2
공개 정적 최종 int VIRTUAL_DEVICES_FIELD_NUMBER
상수값: 1
공개 방법
공개 부울은 (객체 obj) 와 같습니다 .
공개 문자열 getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
공개 com.google.protobuf.ByteString getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
공개 정적 최종 com.google.protobuf.Descriptors.Descriptor getDescriptor ()
공개 int getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
공개 int getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
공개 int getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
공개 int getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
공공의 getParserForType ()
공개 int getSerializedSize ()
공개 부울 getTimestampedAllocator ()
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
공개 최종 com.google.protobuf.UnknownFieldSet getUnknownFields ()
공개 부울 getUseUnifiedMemory ()
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
공개 GPUOptions.Experimental.VirtualDevices getVirtualDevices (int 인덱스)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
공개 int getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
공개 목록< GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
공개 GPUOptions.Experimental.VirtualDevicesOrBuilder getVirtualDevicesOrBuilder (int 인덱스)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
공개 목록<? GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()를 확장합니다.
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
공개 int hashCode ()
공개 최종 부울 isInitialized ()
공개 정적 GPUOptions.ExperimentalparseDelimitedFrom ( InputStream 입력, com.google.protobuf.ExtensionRegistryLite 확장Registry)
던지기
IO예외 |
---|
공개 정적 GPUOptions.ExperimentalparseFrom ( com.google.protobuf.CodedInputStream 입력, com.google.protobuf.ExtensionRegistryLite 확장Registry)
던지기
IO예외 |
---|
공개 정적 GPUOptions.Experimental parsFrom (ByteBuffer 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
던지기
잘못된프로토콜버퍼예외 |
---|
공개 정적 GPUOptions.ExperimentalparseFrom ( byte[] 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
던지기
잘못된프로토콜버퍼예외 |
---|
공개 정적 GPUOptions.ExperimentalparseFrom ( InputStream 입력, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
던지기
IO예외 |
---|
공개 정적 GPUOptions.ExperimentalparseFrom ( com.google.protobuf.ByteString 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
던지기
잘못된프로토콜버퍼예외 |
---|
공개 정적 파서 ()
공개 무효 writeTo (com.google.protobuf.CodedOutputStream 출력)
던지기
IO예외 |
---|