GPUOptions.Experimental

공개 정적 최종 클래스 GPUOptions.Experimental

Protobuf 유형 tensorflow.GPUOptions.Experimental

중첩 클래스

수업 GPUOptions.Experimental.Builder Protobuf 유형 tensorflow.GPUOptions.Experimental
수업 GPUOptions.Experimental.VirtualDevices
 Configuration for breaking down a visible GPU into multiple "virtual"
 devices. 
인터페이스 GPUOptions.Experimental.VirtualDevicesOrBuilder

상수

정수 COLLECTIVE_RING_ORDER_FIELD_NUMBER
정수 KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
정수 KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
정수 KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
정수 NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
정수 TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
정수 USE_UNIFIED_MEMORY_FIELD_NUMBER
정수 VIRTUAL_DEVICES_FIELD_NUMBER

공개 방법

부울
같음 (객체 객체)
getCollectiveRingOrder ()
 If non-empty, defines a good GPU ring order on a single worker based on
 device interconnect.
com.google.protobuf.ByteString
getCollectiveRingOrderBytes ()
 If non-empty, defines a good GPU ring order on a single worker based on
 device interconnect.
정적 GPUOptions.Experimental
GPUOptions.Experimental
최종 정적 com.google.protobuf.Descriptors.Descriptor
정수
getKernelTrackerMaxBytes ()
 If kernel_tracker_max_bytes = n > 0, then a tracking event is
 inserted after every series of kernels allocating a sum of
 memory >= n.
정수
getKernelTrackerMaxInterval ()
 Parameters for GPUKernelTracker.
정수
getKernelTrackerMaxPending ()
 If kernel_tracker_max_pending > 0 then no more than this many
 tracking events can be outstanding at a time.
정수
getNumDevToDevCopyStreams ()
 If > 1, the number of device-to-device copy streams to create
 for each GPUDevice.
정수
부울
getTimestampedAllocator ()
 If true then extra work is done by GPUDevice and GPUBFCAllocator to
 keep track of when GPU memory is freed and when kernels actually
 complete so that we can know when a nominally free memory chunk
 is really not subject to pending use.
최종 com.google.protobuf.UnknownFieldSet
부울
getUseUnifiedMemory ()
 If true, uses CUDA unified memory for memory allocations.
GPUOptions.Experimental.VirtualDevices
getVirtualDevices (정수 인덱스)
 The multi virtual device settings.
정수
getVirtualDevicesCount ()
 The multi virtual device settings.
목록< GPUOptions.Experimental.VirtualDevices >
getVirtualDevicesList ()
 The multi virtual device settings.
GPUOptions.Experimental.VirtualDevicesOrBuilder
getVirtualDevicesOrBuilder (정수 인덱스)
 The multi virtual device settings.
목록<? GPUOptions.Experimental.VirtualDevicesOrBuilder 확장 >
getVirtualDevicesOrBuilderList ()
 The multi virtual device settings.
정수
최종 부울
정적 GPUOptions.Experimental.Builder
정적 GPUOptions.Experimental.Builder
GPUOptions.Experimental.Builder
정적 GPUOptions.Experimental
parsDelimitedFrom (InputStream 입력)
정적 GPUOptions.Experimental
parseDelimitedFrom (InputStream 입력, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
정적 GPUOptions.Experimental
parsFrom (ByteBuffer 데이터)
정적 GPUOptions.Experimental
ParseFrom (com.google.protobuf.CodedInputStream 입력, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
정적 GPUOptions.Experimental
ParseFrom (ByteBuffer 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
정적 GPUOptions.Experimental
ParseFrom (com.google.protobuf.CodedInputStream 입력)
정적 GPUOptions.Experimental
parseFrom (byte[] 데이터, com.google.protobuf.ExtensionRegistryLite 확장Registry)
정적 GPUOptions.Experimental
ParseFrom (com.google.protobuf.ByteString 데이터)
정적 GPUOptions.Experimental
ParseFrom (InputStream 입력, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
정적 GPUOptions.Experimental
ParseFrom (com.google.protobuf.ByteString 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
공전
파서 ()
GPUOptions.Experimental.Builder
무효의
writeTo (com.google.protobuf.CodedOutputStream 출력)

상속된 메서드

상수

공개 정적 최종 int COLLECTIVE_RING_ORDER_FIELD_NUMBER

상수값: 4

공개 정적 최종 int KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER

상수값: 8

공개 정적 최종 int KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER

상수값: 7

공개 정적 최종 int KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER

상수값: 9

공개 정적 최종 정수 NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER

상수값: 3

공개 정적 최종 int TIMESTAMPED_ALLOCATOR_FIELD_NUMBER

상수값: 5

공개 정적 최종 int USE_UNIFIED_MEMORY_FIELD_NUMBER

상수값: 2

공개 정적 최종 int VIRTUAL_DEVICES_FIELD_NUMBER

상수값: 1

공개 방법

공개 부울은 (객체 obj) 와 같습니다 .

공개 문자열 getCollectiveRingOrder ()

 If non-empty, defines a good GPU ring order on a single worker based on
 device interconnect.  This assumes that all workers have the same GPU
 topology.  Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4".
 This ring order is used by the RingReducer implementation of
 CollectiveReduce, and serves as an override to automatic ring order
 generation in OrderTaskDeviceMap() during CollectiveParam resolution.
 
string collective_ring_order = 4;

공개 com.google.protobuf.ByteString getCollectiveRingOrderBytes ()

 If non-empty, defines a good GPU ring order on a single worker based on
 device interconnect.  This assumes that all workers have the same GPU
 topology.  Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4".
 This ring order is used by the RingReducer implementation of
 CollectiveReduce, and serves as an override to automatic ring order
 generation in OrderTaskDeviceMap() during CollectiveParam resolution.
 
string collective_ring_order = 4;

공개 정적 GPUOptions.Experimental getDefaultInstance ()

공개 GPUOptions.Experimental getDefaultInstanceForType ()

공개 정적 최종 com.google.protobuf.Descriptors.Descriptor getDescriptor ()

공개 int getKernelTrackerMaxBytes ()

 If kernel_tracker_max_bytes = n > 0, then a tracking event is
 inserted after every series of kernels allocating a sum of
 memory >= n.  If one kernel allocates b * n bytes, then one
 event will be inserted after it, but it will count as b against
 the pending limit.
 
int32 kernel_tracker_max_bytes = 8;

공개 int getKernelTrackerMaxInterval ()

 Parameters for GPUKernelTracker.  By default no kernel tracking is done.
 Note that timestamped_allocator is only effective if some tracking is
 specified.
 If kernel_tracker_max_interval = n > 0, then a tracking event
 is inserted after every n kernels without an event.
 
int32 kernel_tracker_max_interval = 7;

공개 int getKernelTrackerMaxPending ()

 If kernel_tracker_max_pending > 0 then no more than this many
 tracking events can be outstanding at a time.  An attempt to
 launch an additional kernel will stall until an event
 completes.
 
int32 kernel_tracker_max_pending = 9;

공개 int getNumDevToDevCopyStreams ()

 If > 1, the number of device-to-device copy streams to create
 for each GPUDevice.  Default value is 0, which is automatically
 converted to 1.
 
int32 num_dev_to_dev_copy_streams = 3;

공공의 getParserForType ()

공개 int getSerializedSize ()

공개 부울 getTimestampedAllocator ()

 If true then extra work is done by GPUDevice and GPUBFCAllocator to
 keep track of when GPU memory is freed and when kernels actually
 complete so that we can know when a nominally free memory chunk
 is really not subject to pending use.
 
bool timestamped_allocator = 5;

공개 최종 com.google.protobuf.UnknownFieldSet getUnknownFields ()

공개 부울 getUseUnifiedMemory ()

 If true, uses CUDA unified memory for memory allocations. If
 per_process_gpu_memory_fraction option is greater than 1.0, then unified
 memory is used regardless of the value for this field. See comments for
 per_process_gpu_memory_fraction field for more details and requirements
 of the unified memory. This option is useful to oversubscribe memory if
 multiple processes are sharing a single GPU while individually using less
 than 1.0 per process memory fraction.
 
bool use_unified_memory = 2;

공개 GPUOptions.Experimental.VirtualDevices getVirtualDevices (int 인덱스)

 The multi virtual device settings. If empty (not set), it will create
 single virtual device on each visible GPU, according to the settings
 in "visible_device_list" above. Otherwise, the number of elements in the
 list must be the same as the number of visible GPUs (after
 "visible_device_list" filtering if it is set), and the string represented
 device names (e.g. /device:GPU:<id>) will refer to the virtual
 devices and have the <id> field assigned sequentially starting from 0,
 according to the order they appear in this list and the "memory_limit"
 list inside each element. For example,
   visible_device_list = "1,0"
   virtual_devices { memory_limit: 1GB memory_limit: 2GB }
   virtual_devices {}
 will create three virtual devices as:
   /device:GPU:0 -> visible GPU 1 with 1GB memory
   /device:GPU:1 -> visible GPU 1 with 2GB memory
   /device:GPU:2 -> visible GPU 0 with all available memory
 NOTE:
 1. It's invalid to set both this and "per_process_gpu_memory_fraction"
    at the same time.
 2. Currently this setting is per-process, not per-session. Using
    different settings in different sessions within same process will
    result in undefined behavior.
 
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;

공개 int getVirtualDevicesCount ()

 The multi virtual device settings. If empty (not set), it will create
 single virtual device on each visible GPU, according to the settings
 in "visible_device_list" above. Otherwise, the number of elements in the
 list must be the same as the number of visible GPUs (after
 "visible_device_list" filtering if it is set), and the string represented
 device names (e.g. /device:GPU:<id>) will refer to the virtual
 devices and have the <id> field assigned sequentially starting from 0,
 according to the order they appear in this list and the "memory_limit"
 list inside each element. For example,
   visible_device_list = "1,0"
   virtual_devices { memory_limit: 1GB memory_limit: 2GB }
   virtual_devices {}
 will create three virtual devices as:
   /device:GPU:0 -> visible GPU 1 with 1GB memory
   /device:GPU:1 -> visible GPU 1 with 2GB memory
   /device:GPU:2 -> visible GPU 0 with all available memory
 NOTE:
 1. It's invalid to set both this and "per_process_gpu_memory_fraction"
    at the same time.
 2. Currently this setting is per-process, not per-session. Using
    different settings in different sessions within same process will
    result in undefined behavior.
 
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;

공개 목록< GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()

 The multi virtual device settings. If empty (not set), it will create
 single virtual device on each visible GPU, according to the settings
 in "visible_device_list" above. Otherwise, the number of elements in the
 list must be the same as the number of visible GPUs (after
 "visible_device_list" filtering if it is set), and the string represented
 device names (e.g. /device:GPU:<id>) will refer to the virtual
 devices and have the <id> field assigned sequentially starting from 0,
 according to the order they appear in this list and the "memory_limit"
 list inside each element. For example,
   visible_device_list = "1,0"
   virtual_devices { memory_limit: 1GB memory_limit: 2GB }
   virtual_devices {}
 will create three virtual devices as:
   /device:GPU:0 -> visible GPU 1 with 1GB memory
   /device:GPU:1 -> visible GPU 1 with 2GB memory
   /device:GPU:2 -> visible GPU 0 with all available memory
 NOTE:
 1. It's invalid to set both this and "per_process_gpu_memory_fraction"
    at the same time.
 2. Currently this setting is per-process, not per-session. Using
    different settings in different sessions within same process will
    result in undefined behavior.
 
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;

공개 GPUOptions.Experimental.VirtualDevicesOrBuilder getVirtualDevicesOrBuilder (int 인덱스)

 The multi virtual device settings. If empty (not set), it will create
 single virtual device on each visible GPU, according to the settings
 in "visible_device_list" above. Otherwise, the number of elements in the
 list must be the same as the number of visible GPUs (after
 "visible_device_list" filtering if it is set), and the string represented
 device names (e.g. /device:GPU:<id>) will refer to the virtual
 devices and have the <id> field assigned sequentially starting from 0,
 according to the order they appear in this list and the "memory_limit"
 list inside each element. For example,
   visible_device_list = "1,0"
   virtual_devices { memory_limit: 1GB memory_limit: 2GB }
   virtual_devices {}
 will create three virtual devices as:
   /device:GPU:0 -> visible GPU 1 with 1GB memory
   /device:GPU:1 -> visible GPU 1 with 2GB memory
   /device:GPU:2 -> visible GPU 0 with all available memory
 NOTE:
 1. It's invalid to set both this and "per_process_gpu_memory_fraction"
    at the same time.
 2. Currently this setting is per-process, not per-session. Using
    different settings in different sessions within same process will
    result in undefined behavior.
 
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;

공개 목록<? GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()를 확장합니다.

 The multi virtual device settings. If empty (not set), it will create
 single virtual device on each visible GPU, according to the settings
 in "visible_device_list" above. Otherwise, the number of elements in the
 list must be the same as the number of visible GPUs (after
 "visible_device_list" filtering if it is set), and the string represented
 device names (e.g. /device:GPU:<id>) will refer to the virtual
 devices and have the <id> field assigned sequentially starting from 0,
 according to the order they appear in this list and the "memory_limit"
 list inside each element. For example,
   visible_device_list = "1,0"
   virtual_devices { memory_limit: 1GB memory_limit: 2GB }
   virtual_devices {}
 will create three virtual devices as:
   /device:GPU:0 -> visible GPU 1 with 1GB memory
   /device:GPU:1 -> visible GPU 1 with 2GB memory
   /device:GPU:2 -> visible GPU 0 with all available memory
 NOTE:
 1. It's invalid to set both this and "per_process_gpu_memory_fraction"
    at the same time.
 2. Currently this setting is per-process, not per-session. Using
    different settings in different sessions within same process will
    result in undefined behavior.
 
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;

공개 int hashCode ()

공개 최종 부울 isInitialized ()

공개 정적 GPUOptions.Experimental.Builder newBuilder ( GPUOptions.Experimental 프로토타입)

공개 정적 GPUOptions.Experimental.Builder newBuilder ()

공개 GPUOptions.Experimental.Builder newBuilderForType ()

공개 정적 GPUOptions.Experimental parseDelimitedFrom (InputStream 입력)

던지기
IO예외

공개 정적 GPUOptions.ExperimentalparseDelimitedFrom ( InputStream 입력, com.google.protobuf.ExtensionRegistryLite 확장Registry)

던지기
IO예외

공개 정적 GPUOptions.Experimental parsFrom (ByteBuffer 데이터)

던지기
잘못된프로토콜버퍼예외

공개 정적 GPUOptions.ExperimentalparseFrom ( com.google.protobuf.CodedInputStream 입력, com.google.protobuf.ExtensionRegistryLite 확장Registry)

던지기
IO예외

공개 정적 GPUOptions.Experimental parsFrom (ByteBuffer 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)

던지기
잘못된프로토콜버퍼예외

공개 정적 GPUOptions.Experimental parsFrom (com.google.protobuf.CodedInputStream 입력)

던지기
IO예외

공개 정적 GPUOptions.ExperimentalparseFrom ( byte[] 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)

던지기
잘못된프로토콜버퍼예외

공개 정적 GPUOptions.Experimental ParseFrom (com.google.protobuf.ByteString 데이터)

던지기
잘못된프로토콜버퍼예외

공개 정적 GPUOptions.ExperimentalparseFrom ( InputStream 입력, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)

던지기
IO예외

공개 정적 GPUOptions.ExperimentalparseFrom ( com.google.protobuf.ByteString 데이터, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)

던지기
잘못된프로토콜버퍼예외

공개 정적 파서 ()

공개 GPUOptions.Experimental.Builder toBuilder ()

공개 무효 writeTo (com.google.protobuf.CodedOutputStream 출력)

던지기
IO예외