パブリック静的最終クラスGPUOptions.Experimental
Protobuf 型tensorflow.GPUOptions.Experimental
ネストされたクラス
クラス | GPUOptions.Experimental.Builder | Protobuf 型tensorflow.GPUOptions.Experimental | |
クラス | GPUOptions.Experimental.VirtualDevices | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
インタフェース | GPUOptions.Experimental.VirtualDevicesOrBuilder |
定数
パブリックメソッド
ブール値 | 等しい(オブジェクトオブジェクト) |
弦 | getCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | getCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
静的GPUOptions.Experimental | |
GPUOptions.Experimental | |
最終的な静的 com.google.protobuf.Descriptors.Descriptor | |
整数 | getKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
整数 | getKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
整数 | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
整数 | getNumDevToDevCopyStreams () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
整数 | |
ブール値 | getTimestampedAllocator () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
最終的な com.google.protobuf.UnknownFieldSet | |
ブール値 | getUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
GPUOptions.Experimental.VirtualDevices | getVirtualDevices (int インデックス) The multi virtual device settings. |
整数 | getVirtualDevicesCount () The multi virtual device settings. |
リスト< GPUOptions.Experimental.VirtualDevices > | getVirtualDevicesList () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (int インデックス) The multi virtual device settings. |
リスト<? GPUOptions.Experimental.VirtualDevicesOrBuilderを拡張 > | getVirtualDevicesOrBuilderList () The multi virtual device settings. |
整数 | ハッシュコード() |
最終ブール値 | |
静的GPUOptions.Experimental.Builder | newBuilder ( GPUOptions.Experimentalプロトタイプ) |
静的GPUOptions.Experimental.Builder | newBuilder () |
GPUOptions.Experimental.Builder | |
静的GPUOptions.Experimental | parseDelimitedFrom (InputStream 入力) |
静的GPUOptions.Experimental | parseDelimitedFrom (InputStream 入力、com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
静的GPUOptions.Experimental | parseFrom (ByteBuffer データ) |
静的GPUOptions.Experimental | parseFrom (com.google.protobuf.CodedInputStream 入力、com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
静的GPUOptions.Experimental | parseFrom (ByteBuffer データ、com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
静的GPUOptions.Experimental | parseFrom (com.google.protobuf.CodedInputStream 入力) |
静的GPUOptions.Experimental | parseFrom (byte[] データ、com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
静的GPUOptions.Experimental | parseFrom (com.google.protobuf.ByteString データ) |
静的GPUOptions.Experimental | parseFrom (InputStream 入力、com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
静的GPUOptions.Experimental | parseFrom (com.google.protobuf.ByteString データ、com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
静的 | パーサー() |
GPUOptions.Experimental.Builder | toビルダー() |
空所 | writeTo (com.google.protobuf.CodedOutputStream 出力) |
継承されたメソッド
定数
public static Final int COLLECTIVE_RING_ORDER_FIELD_NUMBER
定数値: 4
パブリック静的最終整数KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
定数値: 8
パブリック静的最終整数KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
定数値: 7
パブリック静的最終整数KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
定数値: 9
public static Final int NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
定数値: 3
パブリック静的最終整数TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
定数値: 5
パブリック静的最終整数USE_UNIFIED_MEMORY_FIELD_NUMBER
定数値: 2
パブリック静的最終整数VIRTUAL_DEVICES_FIELD_NUMBER
定数値: 1
パブリックメソッド
public booleanに等しい(オブジェクト obj)
パブリック String getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public com.google.protobuf.ByteString getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public static Final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
public int getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
public int getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
public int getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
public int getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
公共 getParserForType ()
public int getSerializedSize ()
public boolean getTimestampedAllocator ()
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
public Final com.google.protobuf.UnknownFieldSet getUnknownFields ()
public boolean getUseUnifiedMemory ()
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
public GPUOptions.Experimental.VirtualDevices getVirtualDevices (int インデックス)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public int getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public List< GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public GPUOptions.Experimental.VirtualDevicesOrBuilder getVirtualDevicesOrBuilder (int インデックス)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
公開リスト<? extends GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public int hashCode ()
パブリック最終ブール値isInitialized ()
public static GPUOptions.Experimental parseDelimitedFrom (InputStream 入力、com.google.protobuf.ExtensionRegistryLite extensionRegistry)
投げる
IO例外 |
---|
public static GPUOptions.Experimental parseFrom (com.google.protobuf.CodedInputStream 入力、com.google.protobuf.ExtensionRegistryLite extensionRegistry)
投げる
IO例外 |
---|
public static GPUOptions.Experimental parseFrom (ByteBuffer データ、com.google.protobuf.ExtensionRegistryLite extensionRegistry)
投げる
無効なプロトコルバッファ例外 |
---|
public static GPUOptions.Experimental parseFrom (byte[] データ、com.google.protobuf.ExtensionRegistryLite extensionRegistry)
投げる
無効なプロトコルバッファ例外 |
---|
public static GPUOptions.Experimental parseFrom (com.google.protobuf.ByteString データ)
投げる
無効なプロトコルバッファ例外 |
---|
public static GPUOptions.Experimental parseFrom (InputStream 入力、com.google.protobuf.ExtensionRegistryLite extensionRegistry)
投げる
IO例外 |
---|
public static GPUOptions.Experimental parseFrom (com.google.protobuf.ByteString データ、com.google.protobuf.ExtensionRegistryLite extensionRegistry)
投げる
無効なプロトコルバッファ例外 |
---|
パブリック静的 パーサー()
public void writeTo (com.google.protobuf.CodedOutputStream 出力)
投げる
IO例外 |
---|