מחלקה סופית סטטית ציבורית GPUOptions.ניסוי
סוג Protobuf tensorflow.GPUOptions.Experimental
כיתות מקוננות
מַחלָקָה | GPUOptions.Experimental.Builder | סוג Protobuf tensorflow.GPUOptions.Experimental | |
מַחלָקָה | GPUOptions.Experimental.VirtualDevices | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
מִמְשָׁק | GPUOptions.Experimental.VirtualDevicesOrBuilder |
קבועים
שיטות ציבוריות
בוליאני | שווה (Object obj) |
חוּט | getCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | getCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
סטטי GPUOptions. ניסוי | |
GPUOptions.ניסיוני | |
final static com.google.protobuf.Descriptors.Descriptor | |
int | getKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
int | getKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
int | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
int | getNumDevToDevCopyStreams () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
int | |
בוליאני | getTimestampedAllocator () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
final com.google.protobuf.UnknownFieldSet | |
בוליאני | getUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
GPUOptions.Experimental.VirtualDevices | getVirtualDevices (int index) The multi virtual device settings. |
int | getVirtualDevicesCount () The multi virtual device settings. |
רשימה< GPUOptions.Experimental.VirtualDevices > | getVirtualDevicesList () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (int index) The multi virtual device settings. |
רשימה<? מרחיב את GPUOptions.Experimental.VirtualDevicesOrBuilder > | getVirtualDevicesOrBuilderList () The multi virtual device settings. |
int | hashcode () |
בוליאנית סופית | |
סטטי GPUOptions.Experimental.Builder | newBuilder (אב-טיפוס GPUOptions.Experimental ) |
סטטי GPUOptions.Experimental.Builder | newBuilder () |
GPUOptions.Experimental.Builder | |
סטטי GPUOptions. ניסוי | parseDelimitedFrom (קלט InputStream) |
סטטי GPUOptions. ניסוי | parseDelimitedFrom (קלט InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
סטטי GPUOptions. ניסוי | parseFrom (נתוני ByteBuffer) |
סטטי GPUOptions. ניסוי | parseFrom (קלט com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
סטטי GPUOptions. ניסוי | parseFrom (נתוני ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
סטטי GPUOptions.ניסיוני | parseFrom (קלט com.google.protobuf.CodedInputStream) |
סטטי GPUOptions.ניסיוני | parseFrom (נתוני byte[], com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
סטטי GPUOptions.ניסיוני | parseFrom (נתוני com.google.protobuf.ByteString) |
סטטי GPUOptions.ניסיוני | parseFrom (קלט InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
סטטי GPUOptions.ניסיוני | parseFrom (נתוני com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
סטָטִי | מנתח () |
GPUOptions.Experimental.Builder | toBuilder () |
בָּטֵל | writeTo (פלט com.google.protobuf.CodedOutputStream) |
שיטות בירושה
קבועים
גמר סטטי ציבורי COLLECTIVE_RING_ORDER_FIELD_NUMBER
ערך קבוע: 4
גמר סטטי ציבורי KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
ערך קבוע: 8
גמר סטטי ציבורי KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
ערך קבוע: 7
גמר סטטי ציבורי KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
ערך קבוע: 9
גמר סטטי ציבורי NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
ערך קבוע: 3
גמר סטטי ציבורי TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
ערך קבוע: 5
גמר סטטי ציבורי USE_UNIFIED_MEMORY_FIELD_NUMBER
ערך קבוע: 2
גמר סטטי ציבורי VIRTUAL_DEVICES_FIELD_NUMBER
ערך קבוע: 1
שיטות ציבוריות
שווה ערך בוליאני ציבורי (Object obj)
מחרוזת ציבורית getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public com.google.protobuf.ByteString getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
public int getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
public int getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
public int getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
public int getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
פּוּמְבֵּי getParserForType ()
public int getSerializedSize ()
getTimestampedAllocator בוליאני ציבורי ()
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
public final com.google.protobuf.UnknownFieldSet getUnknownFields ()
getUseUnifiedMemory בוליאני ציבורי ()
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
Public GPUOptions.Experimental.VirtualDevices getVirtualDevices (int index)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public int getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
רשימה ציבורית< GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
Public GPUOptions.Experimental.VirtualDevicesOrBuilder getVirtualDevicesOrBuilder (int index)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
רשימה ציבורית<? מרחיב את GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
public int hashCode ()
בוליאני הסופי הציבורי הוא אתחול ()
Public static GPUOptions.Experimental parseDelimitedFrom (קלט InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
זורק
IOException |
---|
Public static GPUOptions.Experimental parseFrom (נתוני ByteBuffer)
זורק
InvalidProtocolBufferException |
---|
Public static GPUOptions.Experimental parseFrom (com.google.protobuf.CodedInputStream קלט, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
זורק
IOException |
---|
Public static GPUOptions.Experimental parseFrom (נתוני ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
זורק
InvalidProtocolBufferException |
---|
Public static GPUOptions.Experimental parseFrom (קלט com.google.protobuf.CodedInputStream)
זורק
IOException |
---|
Public static GPUOptions.Experimental parseFrom (נתוני byte[], com.google.protobuf.ExtensionRegistryLite extensionRegistry)
זורק
InvalidProtocolBufferException |
---|
Public static GPUOptions.Experimental parseFrom (נתוני com.google.protobuf.ByteString)
זורק
InvalidProtocolBufferException |
---|
Public static GPUOptions.Experimental parseFrom (קלט InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
זורק
IOException |
---|
Public static GPUOptions.Experimental parseFrom (com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
זורק
InvalidProtocolBufferException |
---|
סטטי ציבורי מנתח ()
public void writeTo (פלט com.google.protobuf.CodedOutputStream)
זורק
IOException |
---|