GPUOptions.Builder

classe final estática pública GPUOptions.Builder

Tipo de protobuf tensorflow.GPUOptions

Métodos Públicos

GPUOptions.Builder
addRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor do objeto)
Opções de GPU
Opções de GPU
GPUOptions.Builder
claro ()
GPUOptions.Builder
clearAllocatorType ()
 The type of GPU allocation strategy to use.
GPUOptions.Builder
limparAllowGrowth ()
 If true, the allocator does not pre-allocate the entire specified
 GPU memory region, instead starting small and growing as needed.
GPUOptions.Builder
clearDeferredDeletionBytes ()
 Delay deletion of up to this many bytes to reduce the number of
 interactions with gpu driver code.
GPUOptions.Builder
limparExperimental ()
 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
GPUOptions.Builder
clearField (campo com.google.protobuf.Descriptors.FieldDescriptor)
GPUOptions.Builder
clearForceGpuCompatível ()
 Force all tensors to be gpu_compatible.
GPUOptions.Builder
clearOneof (com.google.protobuf.Descriptors.OneofDescriptor umof)
GPUOptions.Builder
clearPerProcessGpuMemoryFraction ()
 Fraction of the available GPU memory to allocate for each process.
GPUOptions.Builder
clearPollingActiveDelayUsecs ()
 In the event polling loop sleep this many microseconds between
 PollEvents calls, when the queue is not empty.
GPUOptions.Builder
clearPollingInactiveDelayMsecs ()
 This field is deprecated and ignored.
GPUOptions.Builder
clearVisibleDeviceList ()
 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.
GPUOptions.Builder
clonar ()
Corda
getAllocatorType ()
 The type of GPU allocation strategy to use.
com.google.protobuf.ByteString
getAllocatorTypeBytes ()
 The type of GPU allocation strategy to use.
booleano
getAllowGrowth ()
 If true, the allocator does not pre-allocate the entire specified
 GPU memory region, instead starting small and growing as needed.
Opções de GPU
longo
getDeferredDeletionBytes ()
 Delay deletion of up to this many bytes to reduce the number of
 interactions with gpu driver code.
final estático com.google.protobuf.Descriptors.Descriptor
com.google.protobuf.Descriptors.Descriptor
GPUOptions.Experimental
getExperimental ()
 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
GPUOptions.Experimental.Builder
getExperimentalBuilder ()
 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
GPUOptions.ExperimentalOrBuilder
getExperimentalOrBuilder ()
 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
booleano
getForceGpuCompatível ()
 Force all tensors to be gpu_compatible.
dobro
getPerProcessGpuMemoryFraction ()
 Fraction of the available GPU memory to allocate for each process.
interno
getPollingActiveDelayUsecs ()
 In the event polling loop sleep this many microseconds between
 PollEvents calls, when the queue is not empty.
interno
getPollingInactiveDelayMsecs ()
 This field is deprecated and ignored.
Corda
getVisibleDeviceList ()
 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.
com.google.protobuf.ByteString
getVisibleDeviceListBytes ()
 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.
booleano
temExperimental ()
 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
booleano final
GPUOptions.Builder
mergeExperimental (valor GPUOptions.Experimental )
 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
GPUOptions.Builder
mergeFrom (com.google.protobuf.Message outro)
GPUOptions.Builder
mergeFrom (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
final GPUOptions.Builder
mesclarUnknownFields (com.google.protobuf.UnknownFieldSet desconhecidoFields)
GPUOptions.Builder
setAllocatorType (valor da string)
 The type of GPU allocation strategy to use.
GPUOptions.Builder
setAllocatorTypeBytes (valor com.google.protobuf.ByteString)
 The type of GPU allocation strategy to use.
GPUOptions.Builder
setAllowGrowth (valor booleano)
 If true, the allocator does not pre-allocate the entire specified
 GPU memory region, instead starting small and growing as needed.
GPUOptions.Builder
setDeferredDeletionBytes (valor longo)
 Delay deletion of up to this many bytes to reduce the number of
 interactions with gpu driver code.
GPUOptions.Builder
setExperimental ( GPUOptions.Experimental.Builder construtorForValue)
 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
GPUOptions.Builder
setExperimental (valor GPUOptions.Experimental )
 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
GPUOptions.Builder
setField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor do objeto)
GPUOptions.Builder
setForceGpuCompatible (valor booleano)
 Force all tensors to be gpu_compatible.
GPUOptions.Builder
setPerProcessGpuMemoryFraction (valor duplo)
 Fraction of the available GPU memory to allocate for each process.
GPUOptions.Builder
setPollingActiveDelayUsecs (valor interno)
 In the event polling loop sleep this many microseconds between
 PollEvents calls, when the queue is not empty.
GPUOptions.Builder
setPollingInactiveDelayMsecs (valor interno)
 This field is deprecated and ignored.
GPUOptions.Builder
setRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, índice int, valor do objeto)
final GPUOptions.Builder
setUnknownFields (com.google.protobuf.UnknownFieldSet desconhecidoFields)
GPUOptions.Builder
setVisibleDeviceList (valor da string)
 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.
GPUOptions.Builder
setVisibleDeviceListBytes (valor com.google.protobuf.ByteString)
 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.

Métodos herdados

Métodos Públicos

public GPUOptions.Builder addRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor do objeto)

compilação pública GPUOptions ()

público GPUOptions buildPartial ()

público GPUOptions.Builder claro ()

GPUOptions.Builder público clearAllocatorType ()

 The type of GPU allocation strategy to use.
 Allowed values:
 "": The empty string (default) uses a system-chosen default
     which may change over time.
 "BFC": A "Best-fit with coalescing" algorithm, simplified from a
        version of dlmalloc.
 
string allocator_type = 2;

GPUOptions.Builder público clearAllowGrowth ()

 If true, the allocator does not pre-allocate the entire specified
 GPU memory region, instead starting small and growing as needed.
 
bool allow_growth = 4;

GPUOptions.Builder público clearDeferredDeletionBytes ()

 Delay deletion of up to this many bytes to reduce the number of
 interactions with gpu driver code.  If 0, the system chooses
 a reasonable default (several MBs).
 
int64 deferred_deletion_bytes = 3;

público GPUOptions.Builder clearExperimental ()

 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
.tensorflow.GPUOptions.Experimental experimental = 9;

público GPUOptions.Builder clearField (campo com.google.protobuf.Descriptors.FieldDescriptor)

GPUOptions.Builder público clearForceGpuCompatible ()

 Force all tensors to be gpu_compatible. On a GPU-enabled TensorFlow,
 enabling this option forces all CPU tensors to be allocated with Cuda
 pinned memory. Normally, TensorFlow will infer which tensors should be
 allocated as the pinned memory. But in case where the inference is
 incomplete, this option can significantly speed up the cross-device memory
 copy performance as long as it fits the memory.
 Note that this option is not something that should be
 enabled by default for unknown or very large models, since all Cuda pinned
 memory is unpageable, having too much pinned memory might negatively impact
 the overall host system performance.
 
bool force_gpu_compatible = 8;

público GPUOptions.Builder clearOneof (com.google.protobuf.Descriptors.OneofDescriptor oneof)

GPUOptions.Builder público clearPerProcessGpuMemoryFraction ()

 Fraction of the available GPU memory to allocate for each process.
 1 means to allocate all of the GPU memory, 0.5 means the process
 allocates up to ~50% of the available GPU memory.
 GPU memory is pre-allocated unless the allow_growth option is enabled.
 If greater than 1.0, uses CUDA unified memory to potentially oversubscribe
 the amount of memory available on the GPU device by using host memory as a
 swap space. Accessing memory not available on the device will be
 significantly slower as that would require memory transfer between the host
 and the device. Options to reduce the memory requirement should be
 considered before enabling this option as this may come with a negative
 performance impact. Oversubscription using the unified memory requires
 Pascal class or newer GPUs and it is currently only supported on the Linux
 operating system. See
 https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements
 for the detailed requirements.
 
double per_process_gpu_memory_fraction = 1;

GPUOptions.Builder público clearPollingActiveDelayUsecs ()

 In the event polling loop sleep this many microseconds between
 PollEvents calls, when the queue is not empty.  If value is not
 set or set to 0, gets set to a non-zero default.
 
int32 polling_active_delay_usecs = 6;

GPUOptions.Builder público clearPollingInactiveDelayMsecs ()

 This field is deprecated and ignored.
 
int32 polling_inactive_delay_msecs = 7;

GPUOptions.Builder público clearVisibleDeviceList ()

 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.  For example, if TensorFlow
 can see 8 GPU devices in the process, and one wanted to map
 visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1",
 then one would specify this field as "5,3".  This field is similar in
 spirit to the CUDA_VISIBLE_DEVICES environment variable, except
 it applies to the visible GPU devices in the process.
 NOTE:
 1. The GPU driver provides the process with the visible GPUs
    in an order which is not guaranteed to have any correlation to
    the *physical* GPU id in the machine.  This field is used for
    remapping "visible" to "virtual", which means this operates only
    after the process starts.  Users are required to use vendor
    specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the
    physical to visible device mapping prior to invoking TensorFlow.
 2. In the code, the ids in this list are also called "platform GPU id"s,
    and the 'virtual' ids of GPU devices (i.e. the ids in the device
    name "/device:GPU:<id>") are also called "TF GPU id"s. Please
    refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h
    for more information.
 
string visible_device_list = 5;

clone público GPUOptions.Builder ()

String pública getAllocatorType ()

 The type of GPU allocation strategy to use.
 Allowed values:
 "": The empty string (default) uses a system-chosen default
     which may change over time.
 "BFC": A "Best-fit with coalescing" algorithm, simplified from a
        version of dlmalloc.
 
string allocator_type = 2;

público com.google.protobuf.ByteString getAllocatorTypeBytes ()

 The type of GPU allocation strategy to use.
 Allowed values:
 "": The empty string (default) uses a system-chosen default
     which may change over time.
 "BFC": A "Best-fit with coalescing" algorithm, simplified from a
        version of dlmalloc.
 
string allocator_type = 2;

getAllowGrowth booleano público ()

 If true, the allocator does not pre-allocate the entire specified
 GPU memory region, instead starting small and growing as needed.
 
bool allow_growth = 4;

GPUOptions públicas getDefaultInstanceForType ()

público longo getDeferredDeletionBytes ()

 Delay deletion of up to this many bytes to reduce the number of
 interactions with gpu driver code.  If 0, the system chooses
 a reasonable default (several MBs).
 
int64 deferred_deletion_bytes = 3;

final estático público com.google.protobuf.Descriptors.Descriptor getDescriptor ()

público com.google.protobuf.Descriptors.Descriptor getDescriptorForType ()

GPUOptions públicas.Experimental getExperimental ()

 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
.tensorflow.GPUOptions.Experimental experimental = 9;

public GPUOptions.Experimental.Builder getExperimentalBuilder ()

 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
.tensorflow.GPUOptions.Experimental experimental = 9;

public GPUOptions.ExperimentalOrBuilder getExperimentalOrBuilder ()

 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
.tensorflow.GPUOptions.Experimental experimental = 9;

público booleano getForceGpuCompatible ()

 Force all tensors to be gpu_compatible. On a GPU-enabled TensorFlow,
 enabling this option forces all CPU tensors to be allocated with Cuda
 pinned memory. Normally, TensorFlow will infer which tensors should be
 allocated as the pinned memory. But in case where the inference is
 incomplete, this option can significantly speed up the cross-device memory
 copy performance as long as it fits the memory.
 Note that this option is not something that should be
 enabled by default for unknown or very large models, since all Cuda pinned
 memory is unpageable, having too much pinned memory might negatively impact
 the overall host system performance.
 
bool force_gpu_compatible = 8;

público duplo getPerProcessGpuMemoryFraction ()

 Fraction of the available GPU memory to allocate for each process.
 1 means to allocate all of the GPU memory, 0.5 means the process
 allocates up to ~50% of the available GPU memory.
 GPU memory is pre-allocated unless the allow_growth option is enabled.
 If greater than 1.0, uses CUDA unified memory to potentially oversubscribe
 the amount of memory available on the GPU device by using host memory as a
 swap space. Accessing memory not available on the device will be
 significantly slower as that would require memory transfer between the host
 and the device. Options to reduce the memory requirement should be
 considered before enabling this option as this may come with a negative
 performance impact. Oversubscription using the unified memory requires
 Pascal class or newer GPUs and it is currently only supported on the Linux
 operating system. See
 https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements
 for the detailed requirements.
 
double per_process_gpu_memory_fraction = 1;

público int getPollingActiveDelayUsecs ()

 In the event polling loop sleep this many microseconds between
 PollEvents calls, when the queue is not empty.  If value is not
 set or set to 0, gets set to a non-zero default.
 
int32 polling_active_delay_usecs = 6;

público int getPollingInactiveDelayMsecs ()

 This field is deprecated and ignored.
 
int32 polling_inactive_delay_msecs = 7;

String pública getVisibleDeviceList ()

 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.  For example, if TensorFlow
 can see 8 GPU devices in the process, and one wanted to map
 visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1",
 then one would specify this field as "5,3".  This field is similar in
 spirit to the CUDA_VISIBLE_DEVICES environment variable, except
 it applies to the visible GPU devices in the process.
 NOTE:
 1. The GPU driver provides the process with the visible GPUs
    in an order which is not guaranteed to have any correlation to
    the *physical* GPU id in the machine.  This field is used for
    remapping "visible" to "virtual", which means this operates only
    after the process starts.  Users are required to use vendor
    specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the
    physical to visible device mapping prior to invoking TensorFlow.
 2. In the code, the ids in this list are also called "platform GPU id"s,
    and the 'virtual' ids of GPU devices (i.e. the ids in the device
    name "/device:GPU:<id>") are also called "TF GPU id"s. Please
    refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h
    for more information.
 
string visible_device_list = 5;

público com.google.protobuf.ByteString getVisibleDeviceListBytes ()

 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.  For example, if TensorFlow
 can see 8 GPU devices in the process, and one wanted to map
 visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1",
 then one would specify this field as "5,3".  This field is similar in
 spirit to the CUDA_VISIBLE_DEVICES environment variable, except
 it applies to the visible GPU devices in the process.
 NOTE:
 1. The GPU driver provides the process with the visible GPUs
    in an order which is not guaranteed to have any correlation to
    the *physical* GPU id in the machine.  This field is used for
    remapping "visible" to "virtual", which means this operates only
    after the process starts.  Users are required to use vendor
    specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the
    physical to visible device mapping prior to invoking TensorFlow.
 2. In the code, the ids in this list are also called "platform GPU id"s,
    and the 'virtual' ids of GPU devices (i.e. the ids in the device
    name "/device:GPU:<id>") are also called "TF GPU id"s. Please
    refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h
    for more information.
 
string visible_device_list = 5;

has booleano públicoExperimental ()

 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
.tensorflow.GPUOptions.Experimental experimental = 9;

público final booleano isInitialized ()

public GPUOptions.Builder mergeExperimental (valor GPUOptions.Experimental )

 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
.tensorflow.GPUOptions.Experimental experimental = 9;

público GPUOptions.Builder mergeFrom (com.google.protobuf.Message outro)

public GPUOptions.Builder mergeFrom (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Lança
IOException

final público GPUOptions.Builder mergeUnknownFields (com.google.protobuf.UnknownFieldSet desconhecidoFields)

público GPUOptions.Builder setAllocatorType (valor de string)

 The type of GPU allocation strategy to use.
 Allowed values:
 "": The empty string (default) uses a system-chosen default
     which may change over time.
 "BFC": A "Best-fit with coalescing" algorithm, simplified from a
        version of dlmalloc.
 
string allocator_type = 2;

público GPUOptions.Builder setAllocatorTypeBytes (valor com.google.protobuf.ByteString)

 The type of GPU allocation strategy to use.
 Allowed values:
 "": The empty string (default) uses a system-chosen default
     which may change over time.
 "BFC": A "Best-fit with coalescing" algorithm, simplified from a
        version of dlmalloc.
 
string allocator_type = 2;

GPUOptions.Builder público setAllowGrowth (valor booleano)

 If true, the allocator does not pre-allocate the entire specified
 GPU memory region, instead starting small and growing as needed.
 
bool allow_growth = 4;

GPUOptions.Builder público setDeferredDeletionBytes (valor longo)

 Delay deletion of up to this many bytes to reduce the number of
 interactions with gpu driver code.  If 0, the system chooses
 a reasonable default (several MBs).
 
int64 deferred_deletion_bytes = 3;

público GPUOptions.Builder setExperimental ( GPUOptions.Experimental.Builder builderForValue)

 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
.tensorflow.GPUOptions.Experimental experimental = 9;

público GPUOptions.Builder setExperimental (valor GPUOptions.Experimental )

 Everything inside experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat.
 
.tensorflow.GPUOptions.Experimental experimental = 9;

public GPUOptions.Builder setField (campo com.google.protobuf.Descriptors.FieldDescriptor, valor do objeto)

público GPUOptions.Builder setForceGpuCompatible (valor booleano)

 Force all tensors to be gpu_compatible. On a GPU-enabled TensorFlow,
 enabling this option forces all CPU tensors to be allocated with Cuda
 pinned memory. Normally, TensorFlow will infer which tensors should be
 allocated as the pinned memory. But in case where the inference is
 incomplete, this option can significantly speed up the cross-device memory
 copy performance as long as it fits the memory.
 Note that this option is not something that should be
 enabled by default for unknown or very large models, since all Cuda pinned
 memory is unpageable, having too much pinned memory might negatively impact
 the overall host system performance.
 
bool force_gpu_compatible = 8;

GPUOptions.Builder público setPerProcessGpuMemoryFraction (valor duplo)

 Fraction of the available GPU memory to allocate for each process.
 1 means to allocate all of the GPU memory, 0.5 means the process
 allocates up to ~50% of the available GPU memory.
 GPU memory is pre-allocated unless the allow_growth option is enabled.
 If greater than 1.0, uses CUDA unified memory to potentially oversubscribe
 the amount of memory available on the GPU device by using host memory as a
 swap space. Accessing memory not available on the device will be
 significantly slower as that would require memory transfer between the host
 and the device. Options to reduce the memory requirement should be
 considered before enabling this option as this may come with a negative
 performance impact. Oversubscription using the unified memory requires
 Pascal class or newer GPUs and it is currently only supported on the Linux
 operating system. See
 https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements
 for the detailed requirements.
 
double per_process_gpu_memory_fraction = 1;

GPUOptions.Builder público setPollingActiveDelayUsecs (valor int)

 In the event polling loop sleep this many microseconds between
 PollEvents calls, when the queue is not empty.  If value is not
 set or set to 0, gets set to a non-zero default.
 
int32 polling_active_delay_usecs = 6;

GPUOptions.Builder público setPollingInactiveDelayMsecs (valor int)

 This field is deprecated and ignored.
 
int32 polling_inactive_delay_msecs = 7;

public GPUOptions.Builder setRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, índice int, valor do objeto)

final público GPUOptions.Builder setUnknownFields (com.google.protobuf.UnknownFieldSet desconhecidoFields)

GPUOptions.Builder público setVisibleDeviceList (valor de string)

 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.  For example, if TensorFlow
 can see 8 GPU devices in the process, and one wanted to map
 visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1",
 then one would specify this field as "5,3".  This field is similar in
 spirit to the CUDA_VISIBLE_DEVICES environment variable, except
 it applies to the visible GPU devices in the process.
 NOTE:
 1. The GPU driver provides the process with the visible GPUs
    in an order which is not guaranteed to have any correlation to
    the *physical* GPU id in the machine.  This field is used for
    remapping "visible" to "virtual", which means this operates only
    after the process starts.  Users are required to use vendor
    specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the
    physical to visible device mapping prior to invoking TensorFlow.
 2. In the code, the ids in this list are also called "platform GPU id"s,
    and the 'virtual' ids of GPU devices (i.e. the ids in the device
    name "/device:GPU:<id>") are also called "TF GPU id"s. Please
    refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h
    for more information.
 
string visible_device_list = 5;

GPUOptions.Builder público setVisibleDeviceListBytes (valor com.google.protobuf.ByteString)

 A comma-separated list of GPU ids that determines the 'visible'
 to 'virtual' mapping of GPU devices.  For example, if TensorFlow
 can see 8 GPU devices in the process, and one wanted to map
 visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1",
 then one would specify this field as "5,3".  This field is similar in
 spirit to the CUDA_VISIBLE_DEVICES environment variable, except
 it applies to the visible GPU devices in the process.
 NOTE:
 1. The GPU driver provides the process with the visible GPUs
    in an order which is not guaranteed to have any correlation to
    the *physical* GPU id in the machine.  This field is used for
    remapping "visible" to "virtual", which means this operates only
    after the process starts.  Users are required to use vendor
    specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the
    physical to visible device mapping prior to invoking TensorFlow.
 2. In the code, the ids in this list are also called "platform GPU id"s,
    and the 'virtual' ids of GPU devices (i.e. the ids in the device
    name "/device:GPU:<id>") are also called "TF GPU id"s. Please
    refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h
    for more information.
 
string visible_device_list = 5;