classe finale statica pubblica GPUOptions.Builder
Tipo di protocollo tensorflow.GPUOptions
Metodi pubblici
GPUOptions.Builder | addRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, valore oggetto) |
Opzioni GPU | costruire () |
Opzioni GPU | buildPartial () |
GPUOptions.Builder | chiaro () |
GPUOptions.Builder | clearAllocatorType () The type of GPU allocation strategy to use. |
GPUOptions.Builder | cancellaConsenti crescita () If true, the allocator does not pre-allocate the entire specified GPU memory region, instead starting small and growing as needed. |
GPUOptions.Builder | clearDeferredDeletionBytes () Delay deletion of up to this many bytes to reduce the number of interactions with gpu driver code. |
GPUOptions.Builder | clearSperimentale () Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
GPUOptions.Builder | clearField (campo com.google.protobuf.Descriptors.FieldDescriptor) |
GPUOptions.Builder | clearForceGpuCompatibile () Force all tensors to be gpu_compatible. |
GPUOptions.Builder | clearOneof (com.google.protobuf.Descriptors.OneofDescriptor oneof) |
GPUOptions.Builder | clearPerProcessGpuMemoryFraction () Fraction of the available GPU memory to allocate for each process. |
GPUOptions.Builder | clearPollingActiveDelayUsecs () In the event polling loop sleep this many microseconds between PollEvents calls, when the queue is not empty. |
GPUOptions.Builder | clearPollingInactiveDelayMsecs () This field is deprecated and ignored. |
GPUOptions.Builder | clearVisibleDeviceList () A comma-separated list of GPU ids that determines the 'visible' to 'virtual' mapping of GPU devices. |
GPUOptions.Builder | clone () |
Corda | getAllocatorType () The type of GPU allocation strategy to use. |
com.google.protobuf.ByteString | getAllocatorTypeBytes () The type of GPU allocation strategy to use. |
booleano | getAllowGrowth () If true, the allocator does not pre-allocate the entire specified GPU memory region, instead starting small and growing as needed. |
Opzioni GPU | |
lungo | getDeferredDeletionBytes () Delay deletion of up to this many bytes to reduce the number of interactions with gpu driver code. |
com.google.protobuf.Descriptors.Descriptor statico finale | |
com.google.protobuf.Descriptors.Descriptor | |
GPUOptions.Experimental | getExperimental () Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
GPUOptions.Experimental.Builder | getExperimentalBuilder () Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
GPUOptions.ExperimentalOrBuilder | getExperimentalOrBuilder () Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
booleano | getForceGpuCompatible () Force all tensors to be gpu_compatible. |
raddoppiare | getPerProcessGpuMemoryFraction () Fraction of the available GPU memory to allocate for each process. |
int | getPollingActiveDelayUsecs () In the event polling loop sleep this many microseconds between PollEvents calls, when the queue is not empty. |
int | getPollingInactiveDelayMsecs () This field is deprecated and ignored. |
Corda | getVisibleDeviceList () A comma-separated list of GPU ids that determines the 'visible' to 'virtual' mapping of GPU devices. |
com.google.protobuf.ByteString | getVisibleDeviceListBytes () A comma-separated list of GPU ids that determines the 'visible' to 'virtual' mapping of GPU devices. |
booleano | haSperimentale () Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
booleano finale | |
GPUOptions.Builder | mergeExperimental ( GPUOptions.Valore sperimentale) Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
GPUOptions.Builder | mergeFrom (com.google.protobuf.Message altro) |
GPUOptions.Builder | mergeFrom (input com.google.protobuf.CodedInputStream, estensione com.google.protobuf.ExtensionRegistryLiteRegistry) |
finale GPUOptions.Builder | mergeUnknownFields (com.google.protobuf.UnknownFieldSet UnknownFields) |
GPUOptions.Builder | setAllocatorType (valore stringa) The type of GPU allocation strategy to use. |
GPUOptions.Builder | setAllocatorTypeBytes (valore com.google.protobuf.ByteString) The type of GPU allocation strategy to use. |
GPUOptions.Builder | setAllowGrowth (valore booleano) If true, the allocator does not pre-allocate the entire specified GPU memory region, instead starting small and growing as needed. |
GPUOptions.Builder | setDeferredDeletionBytes (valore lungo) Delay deletion of up to this many bytes to reduce the number of interactions with gpu driver code. |
GPUOptions.Builder | setExperimental ( GPUOptions.Experimental.Builder builderForValue) Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
GPUOptions.Builder | setExperimental ( GPUOptions.Valore sperimentale ) Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
GPUOptions.Builder | setField (campo com.google.protobuf.Descriptors.FieldDescriptor, valore oggetto) |
GPUOptions.Builder | setForceGpuCompatible (valore booleano) Force all tensors to be gpu_compatible. |
GPUOptions.Builder | setPerProcessGpuMemoryFraction (doppio valore) Fraction of the available GPU memory to allocate for each process. |
GPUOptions.Builder | setPollingActiveDelayUsecs (valore int) In the event polling loop sleep this many microseconds between PollEvents calls, when the queue is not empty. |
GPUOptions.Builder | setPollingInactiveDelayMsecs (valore int) This field is deprecated and ignored. |
GPUOptions.Builder | setRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, indice int, valore oggetto) |
finale GPUOptions.Builder | setUnknownFields (com.google.protobuf.UnknownFieldSet UnknownFields) |
GPUOptions.Builder | setVisibleDeviceList (valore stringa) A comma-separated list of GPU ids that determines the 'visible' to 'virtual' mapping of GPU devices. |
GPUOptions.Builder | setVisibleDeviceListBytes (valore com.google.protobuf.ByteString) A comma-separated list of GPU ids that determines the 'visible' to 'virtual' mapping of GPU devices. |
Metodi ereditati
Metodi pubblici
public GPUOptions.Builder addRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, valore oggetto)
public GPUOptions.Builder clearAllocatorType ()
The type of GPU allocation strategy to use. Allowed values: "": The empty string (default) uses a system-chosen default which may change over time. "BFC": A "Best-fit with coalescing" algorithm, simplified from a version of dlmalloc.
string allocator_type = 2;
public GPUOptions.Builder clearAllowGrowth ()
If true, the allocator does not pre-allocate the entire specified GPU memory region, instead starting small and growing as needed.
bool allow_growth = 4;
public GPUOptions.Builder clearDeferredDeletionBytes ()
Delay deletion of up to this many bytes to reduce the number of interactions with gpu driver code. If 0, the system chooses a reasonable default (several MBs).
int64 deferred_deletion_bytes = 3;
public GPUOptions.Builder clearExperimental ()
Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.
.tensorflow.GPUOptions.Experimental experimental = 9;
public GPUOptions.Builder clearForceGpuCompatible ()
Force all tensors to be gpu_compatible. On a GPU-enabled TensorFlow, enabling this option forces all CPU tensors to be allocated with Cuda pinned memory. Normally, TensorFlow will infer which tensors should be allocated as the pinned memory. But in case where the inference is incomplete, this option can significantly speed up the cross-device memory copy performance as long as it fits the memory. Note that this option is not something that should be enabled by default for unknown or very large models, since all Cuda pinned memory is unpageable, having too much pinned memory might negatively impact the overall host system performance.
bool force_gpu_compatible = 8;
public GPUOptions.Builder clearPerProcessGpuMemoryFraction ()
Fraction of the available GPU memory to allocate for each process. 1 means to allocate all of the GPU memory, 0.5 means the process allocates up to ~50% of the available GPU memory. GPU memory is pre-allocated unless the allow_growth option is enabled. If greater than 1.0, uses CUDA unified memory to potentially oversubscribe the amount of memory available on the GPU device by using host memory as a swap space. Accessing memory not available on the device will be significantly slower as that would require memory transfer between the host and the device. Options to reduce the memory requirement should be considered before enabling this option as this may come with a negative performance impact. Oversubscription using the unified memory requires Pascal class or newer GPUs and it is currently only supported on the Linux operating system. See https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements for the detailed requirements.
double per_process_gpu_memory_fraction = 1;
public GPUOptions.Builder clearPollingActiveDelayUsecs ()
In the event polling loop sleep this many microseconds between PollEvents calls, when the queue is not empty. If value is not set or set to 0, gets set to a non-zero default.
int32 polling_active_delay_usecs = 6;
public GPUOptions.Builder clearPollingInactiveDelayMsecs ()
This field is deprecated and ignored.
int32 polling_inactive_delay_msecs = 7;
public GPUOptions.Builder clearVisibleDeviceList ()
A comma-separated list of GPU ids that determines the 'visible' to 'virtual' mapping of GPU devices. For example, if TensorFlow can see 8 GPU devices in the process, and one wanted to map visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1", then one would specify this field as "5,3". This field is similar in spirit to the CUDA_VISIBLE_DEVICES environment variable, except it applies to the visible GPU devices in the process. NOTE: 1. The GPU driver provides the process with the visible GPUs in an order which is not guaranteed to have any correlation to the *physical* GPU id in the machine. This field is used for remapping "visible" to "virtual", which means this operates only after the process starts. Users are required to use vendor specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the physical to visible device mapping prior to invoking TensorFlow. 2. In the code, the ids in this list are also called "platform GPU id"s, and the 'virtual' ids of GPU devices (i.e. the ids in the device name "/device:GPU:<id>") are also called "TF GPU id"s. Please refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h for more information.
string visible_device_list = 5;
stringa pubblica getAllocatorType ()
The type of GPU allocation strategy to use. Allowed values: "": The empty string (default) uses a system-chosen default which may change over time. "BFC": A "Best-fit with coalescing" algorithm, simplified from a version of dlmalloc.
string allocator_type = 2;
pubblico com.google.protobuf.ByteString getAllocatorTypeBytes ()
The type of GPU allocation strategy to use. Allowed values: "": The empty string (default) uses a system-chosen default which may change over time. "BFC": A "Best-fit with coalescing" algorithm, simplified from a version of dlmalloc.
string allocator_type = 2;
getAllowGrowth pubblico booleano ()
If true, the allocator does not pre-allocate the entire specified GPU memory region, instead starting small and growing as needed.
bool allow_growth = 4;
pubblico lungo getDeferredDeletionBytes ()
Delay deletion of up to this many bytes to reduce the number of interactions with gpu driver code. If 0, the system chooses a reasonable default (several MBs).
int64 deferred_deletion_bytes = 3;
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
pubblico com.google.protobuf.Descriptors.Descriptor getDescriptorForType ()
public GPUOptions.Experimental getExperimental ()
Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.
.tensorflow.GPUOptions.Experimental experimental = 9;
public GPUOptions.Experimental.Builder getExperimentalBuilder ()
Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.
.tensorflow.GPUOptions.Experimental experimental = 9;
public GPUOptions.ExperimentalOrBuilder getExperimentalOrBuilder ()
Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.
.tensorflow.GPUOptions.Experimental experimental = 9;
pubblico booleano getForceGpuCompatible ()
Force all tensors to be gpu_compatible. On a GPU-enabled TensorFlow, enabling this option forces all CPU tensors to be allocated with Cuda pinned memory. Normally, TensorFlow will infer which tensors should be allocated as the pinned memory. But in case where the inference is incomplete, this option can significantly speed up the cross-device memory copy performance as long as it fits the memory. Note that this option is not something that should be enabled by default for unknown or very large models, since all Cuda pinned memory is unpageable, having too much pinned memory might negatively impact the overall host system performance.
bool force_gpu_compatible = 8;
public double getPerProcessGpuMemoryFraction ()
Fraction of the available GPU memory to allocate for each process. 1 means to allocate all of the GPU memory, 0.5 means the process allocates up to ~50% of the available GPU memory. GPU memory is pre-allocated unless the allow_growth option is enabled. If greater than 1.0, uses CUDA unified memory to potentially oversubscribe the amount of memory available on the GPU device by using host memory as a swap space. Accessing memory not available on the device will be significantly slower as that would require memory transfer between the host and the device. Options to reduce the memory requirement should be considered before enabling this option as this may come with a negative performance impact. Oversubscription using the unified memory requires Pascal class or newer GPUs and it is currently only supported on the Linux operating system. See https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements for the detailed requirements.
double per_process_gpu_memory_fraction = 1;
public int getPollingActiveDelayUsecs ()
In the event polling loop sleep this many microseconds between PollEvents calls, when the queue is not empty. If value is not set or set to 0, gets set to a non-zero default.
int32 polling_active_delay_usecs = 6;
public int getPollingInactiveDelayMsecs ()
This field is deprecated and ignored.
int32 polling_inactive_delay_msecs = 7;
public String getVisibleDeviceList ()
A comma-separated list of GPU ids that determines the 'visible' to 'virtual' mapping of GPU devices. For example, if TensorFlow can see 8 GPU devices in the process, and one wanted to map visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1", then one would specify this field as "5,3". This field is similar in spirit to the CUDA_VISIBLE_DEVICES environment variable, except it applies to the visible GPU devices in the process. NOTE: 1. The GPU driver provides the process with the visible GPUs in an order which is not guaranteed to have any correlation to the *physical* GPU id in the machine. This field is used for remapping "visible" to "virtual", which means this operates only after the process starts. Users are required to use vendor specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the physical to visible device mapping prior to invoking TensorFlow. 2. In the code, the ids in this list are also called "platform GPU id"s, and the 'virtual' ids of GPU devices (i.e. the ids in the device name "/device:GPU:<id>") are also called "TF GPU id"s. Please refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h for more information.
string visible_device_list = 5;
pubblico com.google.protobuf.ByteString getVisibleDeviceListBytes ()
A comma-separated list of GPU ids that determines the 'visible' to 'virtual' mapping of GPU devices. For example, if TensorFlow can see 8 GPU devices in the process, and one wanted to map visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1", then one would specify this field as "5,3". This field is similar in spirit to the CUDA_VISIBLE_DEVICES environment variable, except it applies to the visible GPU devices in the process. NOTE: 1. The GPU driver provides the process with the visible GPUs in an order which is not guaranteed to have any correlation to the *physical* GPU id in the machine. This field is used for remapping "visible" to "virtual", which means this operates only after the process starts. Users are required to use vendor specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the physical to visible device mapping prior to invoking TensorFlow. 2. In the code, the ids in this list are also called "platform GPU id"s, and the 'virtual' ids of GPU devices (i.e. the ids in the device name "/device:GPU:<id>") are also called "TF GPU id"s. Please refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h for more information.
string visible_device_list = 5;
public booleano hasExperimental ()
Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.
.tensorflow.GPUOptions.Experimental experimental = 9;
public final booleano isInitialized ()
public GPUOptions.Builder mergeExperimental (valore GPUOptions.Experimental )
Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.
.tensorflow.GPUOptions.Experimental experimental = 9;
GPUOptions.Builder pubblico mergeFrom (input com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lancia
IOException |
---|
pubblico finale GPUOptions.Builder mergeUnknownFields (com.google.protobuf.UnknownFieldSet UnknownFields)
public GPUOptions.Builder setAllocatorType (valore stringa)
The type of GPU allocation strategy to use. Allowed values: "": The empty string (default) uses a system-chosen default which may change over time. "BFC": A "Best-fit with coalescing" algorithm, simplified from a version of dlmalloc.
string allocator_type = 2;
pubblico GPUOptions.Builder setAllocatorTypeBytes (valore com.google.protobuf.ByteString)
The type of GPU allocation strategy to use. Allowed values: "": The empty string (default) uses a system-chosen default which may change over time. "BFC": A "Best-fit with coalescing" algorithm, simplified from a version of dlmalloc.
string allocator_type = 2;
public GPUOptions.Builder setAllowGrowth (valore booleano)
If true, the allocator does not pre-allocate the entire specified GPU memory region, instead starting small and growing as needed.
bool allow_growth = 4;
public GPUOptions.Builder setDeferredDeletionBytes (valore lungo)
Delay deletion of up to this many bytes to reduce the number of interactions with gpu driver code. If 0, the system chooses a reasonable default (several MBs).
int64 deferred_deletion_bytes = 3;
public GPUOptions.Builder setExperimental ( GPUOptions.Experimental.Builder builderForValue)
Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.
.tensorflow.GPUOptions.Experimental experimental = 9;
public GPUOptions.Builder setExperimental ( GPUOptions.Experimental valore)
Everything inside experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.
.tensorflow.GPUOptions.Experimental experimental = 9;
pubblico GPUOptions.Builder setField (campo com.google.protobuf.Descriptors.FieldDescriptor, valore oggetto)
public GPUOptions.Builder setForceGpuCompatible (valore booleano)
Force all tensors to be gpu_compatible. On a GPU-enabled TensorFlow, enabling this option forces all CPU tensors to be allocated with Cuda pinned memory. Normally, TensorFlow will infer which tensors should be allocated as the pinned memory. But in case where the inference is incomplete, this option can significantly speed up the cross-device memory copy performance as long as it fits the memory. Note that this option is not something that should be enabled by default for unknown or very large models, since all Cuda pinned memory is unpageable, having too much pinned memory might negatively impact the overall host system performance.
bool force_gpu_compatible = 8;
public GPUOptions.Builder setPerProcessGpuMemoryFraction (valore doppio)
Fraction of the available GPU memory to allocate for each process. 1 means to allocate all of the GPU memory, 0.5 means the process allocates up to ~50% of the available GPU memory. GPU memory is pre-allocated unless the allow_growth option is enabled. If greater than 1.0, uses CUDA unified memory to potentially oversubscribe the amount of memory available on the GPU device by using host memory as a swap space. Accessing memory not available on the device will be significantly slower as that would require memory transfer between the host and the device. Options to reduce the memory requirement should be considered before enabling this option as this may come with a negative performance impact. Oversubscription using the unified memory requires Pascal class or newer GPUs and it is currently only supported on the Linux operating system. See https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements for the detailed requirements.
double per_process_gpu_memory_fraction = 1;
public GPUOptions.Builder setPollingActiveDelayUsecs (valore int)
In the event polling loop sleep this many microseconds between PollEvents calls, when the queue is not empty. If value is not set or set to 0, gets set to a non-zero default.
int32 polling_active_delay_usecs = 6;
public GPUOptions.Builder setPollingInactiveDelayMsecs (valore int)
This field is deprecated and ignored.
int32 polling_inactive_delay_msecs = 7;
public GPUOptions.Builder setRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, indice int, valore oggetto)
pubblico finale GPUOptions.Builder setUnknownFields (com.google.protobuf.UnknownFieldSet UnknownFields)
public GPUOptions.Builder setVisibleDeviceList (valore stringa)
A comma-separated list of GPU ids that determines the 'visible' to 'virtual' mapping of GPU devices. For example, if TensorFlow can see 8 GPU devices in the process, and one wanted to map visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1", then one would specify this field as "5,3". This field is similar in spirit to the CUDA_VISIBLE_DEVICES environment variable, except it applies to the visible GPU devices in the process. NOTE: 1. The GPU driver provides the process with the visible GPUs in an order which is not guaranteed to have any correlation to the *physical* GPU id in the machine. This field is used for remapping "visible" to "virtual", which means this operates only after the process starts. Users are required to use vendor specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the physical to visible device mapping prior to invoking TensorFlow. 2. In the code, the ids in this list are also called "platform GPU id"s, and the 'virtual' ids of GPU devices (i.e. the ids in the device name "/device:GPU:<id>") are also called "TF GPU id"s. Please refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h for more information.
string visible_device_list = 5;
pubblico GPUOptions.Builder setVisibleDeviceListBytes (valore com.google.protobuf.ByteString)
A comma-separated list of GPU ids that determines the 'visible' to 'virtual' mapping of GPU devices. For example, if TensorFlow can see 8 GPU devices in the process, and one wanted to map visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1", then one would specify this field as "5,3". This field is similar in spirit to the CUDA_VISIBLE_DEVICES environment variable, except it applies to the visible GPU devices in the process. NOTE: 1. The GPU driver provides the process with the visible GPUs in an order which is not guaranteed to have any correlation to the *physical* GPU id in the machine. This field is used for remapping "visible" to "virtual", which means this operates only after the process starts. Users are required to use vendor specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the physical to visible device mapping prior to invoking TensorFlow. 2. In the code, the ids in this list are also called "platform GPU id"s, and the 'virtual' ids of GPU devices (i.e. the ids in the device name "/device:GPU:<id>") are also called "TF GPU id"s. Please refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h for more information.
string visible_device_list = 5;