ConfigProtoOrBuilder

सार्वजनिक इंटरफ़ेस कॉन्फ़िगप्रोटोऑरबिल्डर
ज्ञात अप्रत्यक्ष उपवर्ग

सार्वजनिक तरीके

अमूर्त बूलियन
इसमेंडिवाइसकाउंट (स्ट्रिंग कुंजी) शामिल है
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
अमूर्त बूलियन
GetAllowSoftPlacement ()
 Whether soft placement is allowed.
सार क्लस्टरडेफ़
getClusterDef ()
 Optional list of all workers to use in this session.
सार ClusterDefOrBuilder
getClusterDefOrBuilder ()
 Optional list of all workers to use in this session.
सार मानचित्र<स्ट्रिंग, पूर्णांक>
getDeviceCount ()
इसके बजाय getDeviceCountMap() उपयोग करें।
सार इंट
getDeviceCountCount ()
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
सार मानचित्र<स्ट्रिंग, पूर्णांक>
getDeviceCountMap ()
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
सार इंट
getDeviceCountOrDefault (स्ट्रिंग कुंजी, int defaultValue)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
सार इंट
getDeviceCountOrThrow (स्ट्रिंग कुंजी)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
सार स्ट्रिंग
getDeviceFilters (इंट इंडेक्स)
 When any filters are present sessions will ignore all devices which do not
 match the filters.
सार com.google.protobuf.ByteString
getDeviceFiltersBytes (इंट इंडेक्स)
 When any filters are present sessions will ignore all devices which do not
 match the filters.
सार इंट
getDeviceFiltersCount ()
 When any filters are present sessions will ignore all devices which do not
 match the filters.
सार सूची<स्ट्रिंग>
getDeviceFiltersList ()
 When any filters are present sessions will ignore all devices which do not
 match the filters.
सार कॉन्फिगप्रोटो.प्रायोगिक
प्रयोगात्मक प्राप्त करें ()
.tensorflow.ConfigProto.Experimental experimental = 16;
सार कॉन्फिगप्रोटो.एक्सपेरिमेंटलऑरबिल्डर
getExperimentalOrBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
सार GPU विकल्प
getGpuOptions ()
 Options that apply to all GPUs.
सार GPUOptionsOrBuilder
getGpuOptionsOrBuilder ()
 Options that apply to all GPUs.
सार ग्राफ़ विकल्प
गेटग्राफऑप्शंस ()
 Options that apply to all graphs.
सार ग्राफ़ऑप्शनऑरबिल्डर
getGraphOptionsOrBuilder ()
 Options that apply to all graphs.
सार इंट
getInterOpParallelismThreads ()
 Nodes that perform blocking operations are enqueued on a pool of
 inter_op_parallelism_threads available in each process.
सार इंट
getIntraOpParallelismThreads ()
 The execution of an individual op (for some op types) can be
 parallelized on a pool of intra_op_parallelism_threads.
अमूर्त बूलियन
getIsolatSessionState ()
 If true, any resources such as Variables used in the session will not be
 shared with other sessions.
अमूर्त बूलियन
getLogDevicePlacement ()
 Whether device placements should be logged.
अमूर्त लंबा
getOperationTimeoutInMs ()
 Global timeout for all blocking operations in this session.
सार इंट
प्लेसमेंटअवधि प्राप्त करें ()
 Assignment of Nodes to Devices is recomputed every placement_period
 steps until the system warms up (at which point the recomputation
 typically slows down automatically).
सार RPCOptions
getRpcOptions ()
 Options that apply when this session uses the distributed runtime.
सार RPCOptionsOrBuilder
getRpcOptionsOrBuilder ()
 Options that apply when this session uses the distributed runtime.
सार थ्रेडपूलऑप्शनप्रोटो
getSessionInterOpThreadPool (int अनुक्रमणिका)
 This option is experimental - it may be replaced with a different mechanism
 in the future.
सार इंट
getSessionInterOpThreadPoolCount ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
सार सूची < थ्रेडपूलऑप्शनप्रोटो >
getSessionInterOpThreadPoolList ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
सार थ्रेडपूलऑप्शनप्रोटोऑरबिल्डर
getSessionInterOpThreadPoolOrBuilder (int अनुक्रमणिका)
 This option is experimental - it may be replaced with a different mechanism
 in the future.
सार सूची<? ThreadPoolOptionProtoOrBuilder > का विस्तार करता है
getSessionInterOpThreadPoolOrBuilderList ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
अमूर्त बूलियन
getShareClusterDevicesInSession ()
 When true, WorkerSessions are created with device attributes from the
 full cluster.
अमूर्त बूलियन
getUsePerSessionThreads ()
 If true, use a new set of threads for this session rather than the global
 pool of threads.
अमूर्त बूलियन
हैक्लस्टरडिफ ()
 Optional list of all workers to use in this session.
अमूर्त बूलियन
प्रयोगात्मक है ()
.tensorflow.ConfigProto.Experimental experimental = 16;
अमूर्त बूलियन
hasGpuOptions ()
 Options that apply to all GPUs.
अमूर्त बूलियन
हैग्राफ़ विकल्प ()
 Options that apply to all graphs.
अमूर्त बूलियन
hasRpcOptions ()
 Options that apply when this session uses the distributed runtime.

सार्वजनिक तरीके

सार्वजनिक सार बूलियन में डिवाइसकाउंट (स्ट्रिंग कुंजी) शामिल है

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

सार्वजनिक सार बूलियन getAllowSoftPlacement ()

 Whether soft placement is allowed. If allow_soft_placement is true,
 an op will be placed on CPU if
   1. there's no GPU implementation for the OP
 or
   2. no GPU devices are known or registered
 or
   3. need to co-locate with reftype input(s) which are from CPU.
 
bool allow_soft_placement = 7;

सार्वजनिक सार ClusterDef getClusterDef ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

सार्वजनिक सार ClusterDefOrBuilder getClusterDefOrBuilder ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

सार्वजनिक सार मानचित्र<स्ट्रिंग, पूर्णांक> getDeviceCount ()

इसके बजाय getDeviceCountMap() उपयोग करें।

सार्वजनिक सार int getDeviceCountCount ()

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

सार्वजनिक सार मानचित्र<स्ट्रिंग, पूर्णांक> getDeviceCountMap ()

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

सार्वजनिक सार int getDeviceCountOrDefault (स्ट्रिंग कुंजी, int defaultValue)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

सार्वजनिक सार int getDeviceCountOrThrow (स्ट्रिंग कुंजी)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

सार्वजनिक सार स्ट्रिंग getDeviceFilters (int अनुक्रमणिका)

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

सार्वजनिक सार com.google.protobuf.ByteString getDeviceFiltersBytes (int अनुक्रमणिका)

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

सार्वजनिक सार int getDeviceFiltersCount ()

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

सार्वजनिक सार सूची <स्ट्रिंग> getDeviceFiltersList ()

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

सार्वजनिक सार कॉन्फिगप्रोटो.प्रायोगिक getExperimental ()

.tensorflow.ConfigProto.Experimental experimental = 16;

सार्वजनिक सार कॉन्फिगप्रोटो.एक्सपेरिमेंटलऑरबिल्डर गेटएक्सपेरिमेंटलऑरबिल्डर ()

.tensorflow.ConfigProto.Experimental experimental = 16;

सार्वजनिक सार GPUOptions getGpuOptions ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

सार्वजनिक सार GPUOptionsOrBuilder getGpuOptionsOrBuilder ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

सार्वजनिक सार ग्राफ़ऑप्शंस getGraphOptions ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

सार्वजनिक सार GraphOptionsOrBuilder getGraphOptionsOrBuilder ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

सार्वजनिक सार int getInterOpParallelismThreads ()

 Nodes that perform blocking operations are enqueued on a pool of
 inter_op_parallelism_threads available in each process.
 0 means the system picks an appropriate number.
 Negative means all operations are performed in caller's thread.
 Note that the first Session created in the process sets the
 number of threads for all future sessions unless use_per_session_threads is
 true or session_inter_op_thread_pool is configured.
 
int32 inter_op_parallelism_threads = 5;

सार्वजनिक सार int getIntraOpParallelismThreads ()

 The execution of an individual op (for some op types) can be
 parallelized on a pool of intra_op_parallelism_threads.
 0 means the system picks an appropriate number.
 If you create an ordinary session, e.g., from Python or C++,
 then there is exactly one intra op thread pool per process.
 The first session created determines the number of threads in this pool.
 All subsequent sessions reuse/share this one global pool.
 There are notable exceptions to the default behavior describe above:
 1. There is an environment variable  for overriding this thread pool,
    named TF_OVERRIDE_GLOBAL_THREADPOOL.
 2. When connecting to a server, such as a remote `tf.train.Server`
    instance, then this option will be ignored altogether.
 
int32 intra_op_parallelism_threads = 2;

सार्वजनिक सार बूलियन getIsolatSessionState ()

 If true, any resources such as Variables used in the session will not be
 shared with other sessions. However, when clusterspec propagation is
 enabled, this field is ignored and sessions are always isolated.
 
bool isolate_session_state = 15;

सार्वजनिक सार बूलियन getLogDevicePlacement ()

 Whether device placements should be logged.
 
bool log_device_placement = 8;

सार्वजनिक सार लंबा getOperationTimeoutInMs ()

 Global timeout for all blocking operations in this session.  If non-zero,
 and not overridden on a per-operation basis, this value will be used as the
 deadline for all blocking operations.
 
int64 operation_timeout_in_ms = 11;

सार्वजनिक सार int getPlacementPeriod ()

 Assignment of Nodes to Devices is recomputed every placement_period
 steps until the system warms up (at which point the recomputation
 typically slows down automatically).
 
int32 placement_period = 3;

सार्वजनिक सार RPCOptions getRpcOptions ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

सार्वजनिक सार RPCOptionsOrBuilder getRpcOptionsOrBuilder ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

सार्वजनिक सार ThreadPoolOptionProto getSessionInterOpThreadPool (int अनुक्रमणिका)

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

सार्वजनिक सार int getSessionInterOpThreadPoolCount ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

सार्वजनिक सार सूची < ThreadPoolOptionProto > getSessionInterOpThreadPoolList ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

सार्वजनिक सार ThreadPoolOptionProtoOrBuilder getSessionInterOpThreadPoolOrBuilder (int अनुक्रमणिका)

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

सार्वजनिक सार सूची<? ThreadPoolOptionProtoOrBuilder > getSessionInterOpThreadPoolOrBuilderList () का विस्तार करता है

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

सार्वजनिक सार बूलियन getShareClusterDevicesInSession ()

 When true, WorkerSessions are created with device attributes from the
 full cluster.
 This is helpful when a worker wants to partition a graph
 (for example during a PartitionedCallOp).
 
bool share_cluster_devices_in_session = 17;

सार्वजनिक सार बूलियन getUsePerSessionThreads ()

 If true, use a new set of threads for this session rather than the global
 pool of threads. Only supported by direct sessions.
 If false, use the global threads created by the first session, or the
 per-session thread pools configured by session_inter_op_thread_pool.
 This option is deprecated. The same effect can be achieved by setting
 session_inter_op_thread_pool to have one element, whose num_threads equals
 inter_op_parallelism_threads.
 
bool use_per_session_threads = 9;

सार्वजनिक सार बूलियन hasClusterDef ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

सार्वजनिक सार बूलियन हैप्रायोगिक ()

.tensorflow.ConfigProto.Experimental experimental = 16;

सार्वजनिक सार बूलियन hasGpuOptions ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

सार्वजनिक सार बूलियन hasGraphOptions ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

सार्वजनिक सार बूलियन hasRpcOptions ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;