ConfigProto

classe final pública ConfigProto

 Session configuration parameters.
 The system picks appropriate values for fields that are not set.
 
Tipo de protobuf tensorflow.ConfigProto

Classes aninhadas

aula ConfigProto.Builder
 Session configuration parameters. 
aula ConfigProto.Experimental
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
interface ConfigProto.ExperimentalOrBuilder

Constantes

interno ALLOW_SOFT_PLACEMENT_FIELD_NUMBER
interno CLUSTER_DEF_FIELD_NUMBER
interno DEVICE_COUNT_FIELD_NUMBER
interno DEVICE_FILTERS_FIELD_NUMBER
interno EXPERIMENTAL_FIELD_NUMBER
interno GPU_OPTIONS_FIELD_NUMBER
interno GRAPH_OPTIONS_FIELD_NUMBER
interno INTER_OP_PARALLELISM_THREADS_FIELD_NUMBER
interno INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER
interno ISOLATE_SESSION_STATE_FIELD_NUMBER
interno LOG_DEVICE_PLACEMENT_FIELD_NUMBER
interno OPERATION_TIMEOUT_IN_MS_FIELD_NUMBER
interno PLACEMENT_PERIOD_FIELD_NUMBER
interno RPC_OPTIONS_FIELD_NUMBER
interno SESSION_INTER_OP_THREAD_POOL_FIELD_NUMBER
interno SHARE_CLUSTER_DEVICES_IN_SESSION_FIELD_NUMBER
interno USE_PER_SESSION_THREADS_FIELD_NUMBER

Métodos Públicos

booleano
contémDeviceCount (chave de string)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
booleano
é igual (objeto obj)
booleano
getAllowSoftPlacement ()
 Whether soft placement is allowed.
ClusterDef
getClusterDef ()
 Optional list of all workers to use in this session.
ClusterDefOrBuilder
getClusterDefOrBuilder ()
 Optional list of all workers to use in this session.
ConfigProto estático
ConfigProto
final estático com.google.protobuf.Descriptors.Descriptor
Mapa<String, Inteiro>
getDeviceCount ()
Use getDeviceCountMap() em vez disso.
interno
getDeviceCountCount ()
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
Mapa<String, Inteiro>
getDeviceCountMap ()
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
interno
getDeviceCountOrDefault (chave de string, int defaultValue)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
interno
getDeviceCountOrThrow (chave de string)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
Corda
getDeviceFilters (índice interno)
 When any filters are present sessions will ignore all devices which do not
 match the filters.
com.google.protobuf.ByteString
getDeviceFiltersBytes (índice interno)
 When any filters are present sessions will ignore all devices which do not
 match the filters.
interno
getDeviceFiltersCount ()
 When any filters are present sessions will ignore all devices which do not
 match the filters.
com.google.protobuf.ProtocolStringList
getDeviceFiltersList ()
 When any filters are present sessions will ignore all devices which do not
 match the filters.
ConfigProto.Experimental
getExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
ConfigProto.ExperimentalOrBuilder
getExperimentalOrBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
Opções de GPU
getGpuOptions ()
 Options that apply to all GPUs.
GPUOptionsOrBuilder
getGpuOptionsOrBuilder ()
 Options that apply to all GPUs.
Opções de gráfico
getGraphOptions ()
 Options that apply to all graphs.
GraphOptionsOrBuilder
getGraphOptionsOrBuilder ()
 Options that apply to all graphs.
interno
getInterOpParallelismThreads ()
 Nodes that perform blocking operations are enqueued on a pool of
 inter_op_parallelism_threads available in each process.
interno
getIntraOpParallelismThreads ()
 The execution of an individual op (for some op types) can be
 parallelized on a pool of intra_op_parallelism_threads.
booleano
getIsolateSessionState ()
 If true, any resources such as Variables used in the session will not be
 shared with other sessions.
booleano
getLogDevicePlacement ()
 Whether device placements should be logged.
longo
getOperationTimeoutInMs ()
 Global timeout for all blocking operations in this session.
interno
getPlacementPeriod ()
 Assignment of Nodes to Devices is recomputed every placement_period
 steps until the system warms up (at which point the recomputation
 typically slows down automatically).
Opções RPC
getRpcOptions ()
 Options that apply when this session uses the distributed runtime.
RPCOptionsOrBuilder
getRpcOptionsOrBuilder ()
 Options that apply when this session uses the distributed runtime.
interno
ThreadPoolOptionProto
getSessionInterOpThreadPool (índice interno)
 This option is experimental - it may be replaced with a different mechanism
 in the future.
interno
getSessionInterOpThreadPoolCount ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
Lista< ThreadPoolOptionProto >
getSessionInterOpThreadPoolList ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
ThreadPoolOptionProtoOrBuilder
getSessionInterOpThreadPoolOrBuilder (índice interno)
 This option is experimental - it may be replaced with a different mechanism
 in the future.
Lista<? estende ThreadPoolOptionProtoOrBuilder >
getSessionInterOpThreadPoolOrBuilderList ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
booleano
getShareClusterDevicesInSession ()
 When true, WorkerSessions are created with device attributes from the
 full cluster.
final com.google.protobuf.UnknownFieldSet
booleano
getUsePerSessionThreads ()
 If true, use a new set of threads for this session rather than the global
 pool of threads.
booleano
hasClusterDef ()
 Optional list of all workers to use in this session.
booleano
temExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
booleano
hasGpuOptions ()
 Options that apply to all GPUs.
booleano
hasGraphOptions ()
 Options that apply to all graphs.
booleano
hasRpcOptions ()
 Options that apply when this session uses the distributed runtime.
interno
booleano final
ConfigProto.Builder estático
ConfigProto.Builder estático
newBuilder (protótipo ConfigProto )
ConfigProto.Builder
ConfigProto estático
parseDelimitedFrom (entrada InputStream)
ConfigProto estático
parseDelimitedFrom (entrada InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ConfigProto estático
parseFrom (dados de ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ConfigProto estático
parseFrom (entrada com.google.protobuf.CodedInputStream)
ConfigProto estático
parseFrom (byte[] dados, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ConfigProto estático
parseFrom (dados de ByteBuffer)
ConfigProto estático
parseFrom (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ConfigProto estático
parseFrom (dados com.google.protobuf.ByteString)
ConfigProto estático
parseFrom (entrada InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ConfigProto estático
parseFrom (dados com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
estático
ConfigProto.Builder
vazio
writeTo (saída com.google.protobuf.CodedOutputStream)

Métodos herdados

Constantes

int final estático público ALLOW_SOFT_PLACEMENT_FIELD_NUMBER

Valor Constante: 7

público estático final int CLUSTER_DEF_FIELD_NUMBER

Valor Constante: 14

int final estático público DEVICE_COUNT_FIELD_NUMBER

Valor Constante: 1

público estático final int DEVICE_FILTERS_FIELD_NUMBER

Valor Constante: 4

público estático final int EXPERIMENTAL_FIELD_NUMBER

Valor Constante: 16

público estático final int GPU_OPTIONS_FIELD_NUMBER

Valor Constante: 6

int final estático público GRAPH_OPTIONS_FIELD_NUMBER

Valor Constante: 10

público estático final int INTER_OP_PARALLELISM_THREADS_FIELD_NUMBER

Valor Constante: 5

público estático final int INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER

Valor Constante: 2

público estático final int ISOLATE_SESSION_STATE_FIELD_NUMBER

Valor Constante: 15

público estático final int LOG_DEVICE_PLACEMENT_FIELD_NUMBER

Valor Constante: 8

público estático final int OPERATION_TIMEOUT_IN_MS_FIELD_NUMBER

Valor Constante: 11

público estático final int PLACEMENT_PERIOD_FIELD_NUMBER

Valor Constante: 3

público estático final int RPC_OPTIONS_FIELD_NUMBER

Valor Constante: 13

público estático final int SESSION_INTER_OP_THREAD_POOL_FIELD_NUMBER

Valor Constante: 12

público estático final int SHARE_CLUSTER_DEVICES_IN_SESSION_FIELD_NUMBER

Valor Constante: 17

público estático final int USE_PER_SESSION_THREADS_FIELD_NUMBER

Valor Constante: 9

Métodos Públicos

booleano público contémDeviceCount (chave String)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

booleano público é igual (Object obj)

getAllowSoftPlacement booleano público ()

 Whether soft placement is allowed. If allow_soft_placement is true,
 an op will be placed on CPU if
   1. there's no GPU implementation for the OP
 or
   2. no GPU devices are known or registered
 or
   3. need to co-locate with reftype input(s) which are from CPU.
 
bool allow_soft_placement = 7;

ClusterDef públicogetClusterDef ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

ClusterDefOrBuilder públicogetClusterDefOrBuilder ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

ConfigProto estático público getDefaultInstance ()

ConfigProto público getDefaultInstanceForType ()

final estático público com.google.protobuf.Descriptors.Descriptor getDescriptor ()

mapa público<String, inteiro> getDeviceCount ()

Use getDeviceCountMap() em vez disso.

público int getDeviceCountCount ()

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

mapa público<String, inteiro> getDeviceCountMap ()

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

public int getDeviceCountOrDefault (chave String, int defaultValue)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

public int getDeviceCountOrThrow (chave de string)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

string pública getDeviceFilters (índice int)

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

público com.google.protobuf.ByteString getDeviceFiltersBytes (índice int)

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

público int getDeviceFiltersCount ()

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

público com.google.protobuf.ProtocolStringList getDeviceFiltersList ()

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

public ConfigProto.Experimental getExperimental ()

.tensorflow.ConfigProto.Experimental experimental = 16;

public ConfigProto.ExperimentalOrBuilder getExperimentalOrBuilder ()

.tensorflow.ConfigProto.Experimental experimental = 16;

GPUOptions públicas getGpuOptions ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

public GPUOptionsOrBuilder getGpuOptionsOrBuilder ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

public GraphOptionsgetGraphOptions ( )

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

public GraphOptionsOrBuilder getGraphOptionsOrBuilder ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

público int getInterOpParallelismThreads ()

 Nodes that perform blocking operations are enqueued on a pool of
 inter_op_parallelism_threads available in each process.
 0 means the system picks an appropriate number.
 Negative means all operations are performed in caller's thread.
 Note that the first Session created in the process sets the
 number of threads for all future sessions unless use_per_session_threads is
 true or session_inter_op_thread_pool is configured.
 
int32 inter_op_parallelism_threads = 5;

public int getIntraOpParallelismThreads ()

 The execution of an individual op (for some op types) can be
 parallelized on a pool of intra_op_parallelism_threads.
 0 means the system picks an appropriate number.
 If you create an ordinary session, e.g., from Python or C++,
 then there is exactly one intra op thread pool per process.
 The first session created determines the number of threads in this pool.
 All subsequent sessions reuse/share this one global pool.
 There are notable exceptions to the default behavior describe above:
 1. There is an environment variable  for overriding this thread pool,
    named TF_OVERRIDE_GLOBAL_THREADPOOL.
 2. When connecting to a server, such as a remote `tf.train.Server`
    instance, then this option will be ignored altogether.
 
int32 intra_op_parallelism_threads = 2;

getIsolateSessionState booleano público ()

 If true, any resources such as Variables used in the session will not be
 shared with other sessions. However, when clusterspec propagation is
 enabled, this field is ignored and sessions are always isolated.
 
bool isolate_session_state = 15;

getLogDevicePlacement booleano público ()

 Whether device placements should be logged.
 
bool log_device_placement = 8;

público longo getOperationTimeoutInMs ()

 Global timeout for all blocking operations in this session.  If non-zero,
 and not overridden on a per-operation basis, this value will be used as the
 deadline for all blocking operations.
 
int64 operation_timeout_in_ms = 11;

público getParserForType ()

público int getPlacementPeriod ()

 Assignment of Nodes to Devices is recomputed every placement_period
 steps until the system warms up (at which point the recomputation
 typically slows down automatically).
 
int32 placement_period = 3;

RPCOptions públicas getRpcOptions ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

public RPCOptionsOrBuilder getRpcOptionsOrBuilder ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

público int getSerializedSize ()

public ThreadPoolOptionProto getSessionInterOpThreadPool (índice int)

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

público int getSessionInterOpThreadPoolCount ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

Lista pública< ThreadPoolOptionProto > getSessionInterOpThreadPoolList ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

público ThreadPoolOptionProtoOrBuilder getSessionInterOpThreadPoolOrBuilder (índice int)

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

Lista pública<? estende ThreadPoolOptionProtoOrBuilder > getSessionInterOpThreadPoolOrBuilderList ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

público booleano getShareClusterDevicesInSession ()

 When true, WorkerSessions are created with device attributes from the
 full cluster.
 This is helpful when a worker wants to partition a graph
 (for example during a PartitionedCallOp).
 
bool share_cluster_devices_in_session = 17;

final público com.google.protobuf.UnknownFieldSet getUnknownFields ()

getUsePerSessionThreads booleano público ()

 If true, use a new set of threads for this session rather than the global
 pool of threads. Only supported by direct sessions.
 If false, use the global threads created by the first session, or the
 per-session thread pools configured by session_inter_op_thread_pool.
 This option is deprecated. The same effect can be achieved by setting
 session_inter_op_thread_pool to have one element, whose num_threads equals
 inter_op_parallelism_threads.
 
bool use_per_session_threads = 9;

hasClusterDef booleano público ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

has booleano públicoExperimental ()

.tensorflow.ConfigProto.Experimental experimental = 16;

hasGpuOptions booleano público ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

hasGraphOptions booleano público ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

hasRpcOptions booleano público ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

hashCode int público ()

público final booleano isInitialized ()

público estático ConfigProto.Builder newBuilder ()

public static ConfigProto.Builder newBuilder (protótipo ConfigProto )

público ConfigProto.Builder newBuilderForType ()

public static ConfigProto parseDelimitedFrom (entrada InputStream)

Lança
IOException

public static ConfigProto parseDelimitedFrom (entrada InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Lança
IOException

public static ConfigProto parseFrom (dados ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Lança
InvalidProtocolBufferException

ConfigProto estático público parseFrom (entrada com.google.protobuf.CodedInputStream)

Lança
IOException

public static ConfigProto parseFrom (byte[] dados, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Lança
InvalidProtocolBufferException

ConfigProto estático público parseFrom (dados ByteBuffer)

Lança
InvalidProtocolBufferException

public static ConfigProto parseFrom (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Lança
IOException

ConfigProto estático público parseFrom (dados com.google.protobuf.ByteString)

Lança
InvalidProtocolBufferException

public static ConfigProto parseFrom (entrada InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Lança
IOException

ConfigProto estático público parseFrom (dados com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Lança
InvalidProtocolBufferException

estática pública analisador ()

ConfigProto.Builder público paraBuilder ()

public void writeTo (saída com.google.protobuf.CodedOutputStream)

Lança
IOException